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The respiration response function: The temporal dynamics of fMRI
signal fluctuations related to changes in respiration
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Changes in the subject’s breathing rate or depth, such as a breath-hold
challenge, can cause significant MRI signal changes. However, the
response function that best models breath-holding-induced signal
changes, as well as those resulting from a wider range of breathing
variations including those occurring during rest, has not yet been
determined. Respiration related signal changes appear to be slower
than neuronally induced BOLD signal changes and are not modeled
accurately using the typical hemodynamic response functions used in
fMRI. In this study, we derive a new response function to model the
average MRI signal changes induced by variations in the respiration
volume (breath-to-breath changes in the respiration depth and rate).
This was done by averaging the response to a series of single deep
breaths performed once every 40 s amongst otherwise constant
breathing. The new “respiration response function” consists of an
early overshoot followed by a later undershoot (peaking at approxi-
mately 16 s), and accurately models the MRI signal changes resulting
from breath-holding as well as cued depth and rate changes.
Published by Elsevier Inc.
Introduction

Time series of MRI signal changes measured in functional MRI
(fMRI) can be strongly influenced by many factors, including
changes in the subject’s breathing rate and/or depth over time. This
can be seen most clearly in studies involving periods of breath-
holding, where a breath-hold of even a few seconds can cause
signal changes of several percent (Abbott et al., 2005; Kastrup et
al., 1999a,b; Kwong et al., 1995; Li et al., 1999; Stillman et al.,
1995; Thomason et al., 2005). More recently, studies have shown
that even subtle variations in breathing depth and rate that occur
naturally during rest can result in significant signal changes (Birn
et al., 2006; Wise et al., 2004). These signal changes arise from a
number of hypothesized mechanisms. First, a number of brain
regions are activated in association with voluntary changes in
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breathing (McKay et al., 2003). In addition to these neuronally
induced blood oxygenation level-dependent (BOLD) signal
changes, there are a number of non-neuronal, artifactual, signal
changes. One source of these artifactual signal changes is the
breathing cycle itself: the motion of the chest during breathing
causes changes in the magnetic field, which leads to image
distortions (Brosch et al., 2002; Raj et al., 2001). Secondly,
changes in the depth and rate of breathing result in variations in the
arterial level of CO2, a potent vasodilator (Van den Aardweg and
Karemaker, 2002). Fluctuations in breathing therefore cause either
vasodilation or vasoconstriction, resulting in blood flow and
oxygenation changes. These changes typically occur at very low
temporal frequencies (b0.1 Hz), and are not removed by typical
physiological correction routines (Glover et al., 2000; Josephs et
al., 1997). These additional physiologically induced fluctuations
can impede the detection of functional activation, or they can result
in additional false positives if the breathing changes are correlated
with the task. Furthermore, these breathing-related fluctuations are
particularly problematic for resting-state connectivity analyses,
which rely on the correlation of time-series between brain regions
to infer a functional connection. As demonstrated in previous
studies, the fluctuations in breathing during rest generally occur at
similar frequencies (∼0.03 Hz) and in similar brain regions as
those implicated in resting-state default-mode network activity
(Birn et al., 2006; Modarreszadeh and Bruce, 1994; Van den
Aardweg and Karemaker, 2002; Wise et al., 2004). Therefore, in
order to obtain resting-state activity maps that reflect fluctuations
in neuronal activity exclusively, it is vital that these respiration-
induced fluctuations are modeled or removed from the data.
Finally, respiratory challenges, such as breath-holding, have been
suggested as ways to measure relative baseline venous blood
volume across the brain, which can be used to calibrate the BOLD
signal. All of these analyses – correcting for false positives and
negatives, improving functional connectivity analysis, and map-
ping the relative amplitude of respiration-induced signal changes –
require that we know precisely how a change in respiration affects
the MRI signal.

Previously, respiration changes have been modeled in one of 3
ways – (1) as the timing of breathing changes convolved with a
hemodynamic response function derived from BOLD activation
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dynamics (a gamma-variate function, or the default hemodynamic
response function included in SPM) (Abbott et al., 2005;
Thomason et al., 2005, 2007); (2) by time-shifting a boxcar
waveform representing the cue for breathing changes (e.g. cues for
breath-holding) (Kastrup et al., 1999a,b; Li et al., 1999); or (3) by
time-shifting an estimate of the respiration volume per unit time
(Birn et al., 2006). It is not apparent whether the use of a relatively
rapid activation-derived BOLD signal change response function is
necessarily the best model for the slower respiration-induced
changes. First, the flow and BOLD changes induced by variations
in breathing are mediated in part by levels of arterial oxygen
saturation, intrathoracic pressure changes, and variations in arterial
CO2 (Thomason et al., 2005). These changes in arterial CO2 do not
occur immediately after a change in the breathing volume or rate,
but may take several seconds to develop (Van den Aardweg and
Bruce, 2002). Additionally, signal changes induced by an
administration of CO2 have been observed to result in relatively
slow signal changes, with a time constant of approximately 45 s
and a delay of approximately 6 s (Corfield et al., 2001; Poulin et
al., 1996). Since the time constants of these signal changes are not
the same as neuronal-activation-induced BOLD changes, it is
unlikely that a gamma-variate impulse response, with time
constants originally derived from the BOLD fMRI signal change
to a 1-s visual stimulus, accurately models the MR signal response
to respiration changes. Finally, the MR signal response to breath-
holding has often shown a strong bimodal response, with an early
signal decrease followed by a later overshoot, particularly when the
breath-hold is performed after inspiration. The correlation of the
MRI time course with an estimate of the respiration volume per
time changes during rest has also suggested a bimodal response to
breathing changes, with a positive correlation at short latencies,
and an even larger negative correlation at longer latencies (Birn et
al., 2006). In other words, a decrease in the breathing depth or rate
results in an initial decrease in signal followed by a strong
overshoot, while an increase in the breathing depth or rate results in
an initial overshoot with a later decrease. All of these findings and
observations suggest that the MRI signal response to variations in
respiration has a longer time constant and is potentially more
complex than the BOLD fMRI response to activation, and should
therefore be modeled with a different response function.

In a previous study, we showed that a time-shifted estimate of
the temporal changes in respiration volume per time (RVT) is
significantly correlated with MRI signal variations (Birn et al.,
2006). However, fully removing the variance in the MRI signal
induced by respiration changes requires a function that is not only
roughly correlated with the response, but one that matches the
precise temporal shape of the induced signal change. A sudden
change in breathing rate or depth, for example, results in a
relatively slow flow and oxygenation change. Regressing a shifted
estimate of the respiration volume per time out of the MRI signal
time series therefore leaves a significant amount of residual
variation, which can still cause problems in resting-state con-
nectivity analyses (Birn et al., 2006). In addition, this approach is
problematic if the respiration changes are correlated with a task
being investigated in a study. Allowing for a variable time-shift of
the RVT time course would result in true task-related BOLD
responses as being falsely classified as artifact, and a resultant
decreased ability to detect true activation. If, however, the
respiration changes result in CO2 mediated responses that are
slower than activation-induced BOLD responses, separating
respiration-induced from activation-induced changes more cleanly
and completely may be possible, even if breathing changes are
correlated with the task.

The goal of this study is to determine the transfer function
between respiration changes and MRI signal changes. This transfer
function is estimated by having the subject perform a series of
single deep breaths, spaced 30–40 s apart, during otherwise
constant respiration rate and depth. The rationale for this is that a
single deep breath will result not only in known magnetic field
changes, which occur during the breath, but also in other
physiological changes, such as a transient decrease in arterial
CO2, evident in a series of breaths and their associated rate and
depth changes. Three breathing manipulations – depth changes,
rate changes, and breath-holding – are studied. In addition, we test
whether this “respiration response function” can accurately predict
the fluctuations in the MRI signal resulting from RVT fluctuations
at rest.

Methods

Subjects and imaging parameters

Eleven normal, healthy, right-handed volunteers were scanned
under an Institutional Review Board (IRB) approved protocol after
obtaining informed consent (ages: 23–40 years, mean age 31.8±
6.2 years, 6 females). Time series of T2*-weighted echo-planar
MR images were acquired on a 3-T General Electric (GE) MR
scanner (Waukesha, WI) using an 8-channel GE receive coil with
whole body RF excitation. A limited coverage of six 5-mm-thick
axial slices positioned at the level of the visual cortex was
acquired. This limited coverage was used in order to obtain a faster
temporal resolution (TR: 500 ms, TE: 30 ms, flip angle: 90°, FOV:
24 cm, slice thickness: 5 mm, matrix: 64×64, 165 image volumes
per time series). A high-resolution anatomical image was acquired
using a T1-weighted Magnetization Prepared Rapid Gradient Echo
(MP-RAGE) sequence. Subjects’ heartbeats were recorded using a
pulse-oximeter placed on the left index finger. Respiration was
measured with a pneumatic belt around the chest. These two
physiological monitoring devices are an integrated part of the GE
MR scanner, and are recorded to a text file with a 25 ms sampling
period by changing a manufacturer supplied control variable on the
MR console. The measurement obtained from the respiration belt is
linearly related to the expansion of the belt.

Tasks

Subjects were scanned during rest and during the performance
of different cued respiration modulations. This cue consisted of a
visually presented bar that moved left or right, indicating the
timing and depth of the respiration that was to be performed
(inspiration reflected by the bar increasing in size, and expiration
indicated by the bar decreasing in size). This stimulus was
programmed using the Psychophysics Toolbox (Brainard, 1997)
implemented in Matlab (MathWorks, Inc.). In the first echo-planar
imaging (EPI) run, subjects were scanned at rest, and were
instructed to keep their eyes closed. In other runs, subjects were
cued to: (1) take one deep breath every 30–40 s (10 breaths), with
otherwise constant breathing; (2) increase their breathing depth for
periods of 15–20 s (10 breaths), alternated with 30–45 s periods
(20 breaths) of constant breathing rate and depth; (3) increase their
breathing rate for periods of 20 s (10 breaths), alternated with 40 s
periods (10 breaths) of constant breathing rate and depth; and (4)
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hold their breath at the end of their normal expiration for periods of
20 s, alternated with normal breathing for periods of 40–60 s. The
rate of respiration for the periods of constant breathing rate and
depth were set to each subject’s average respiration rate measured
from their resting run, typically between 15 and 20 breaths per
minute (3–4 s per breath). Runs during rest and cued single deep
breaths were repeated in all subjects.

Analysis

All image analysis was performed using AFNI (Cox, 1996).
Reconstructed images were first corrected for motion using a rigid-
body volume registration. Fluctuations at the respiration and
cardiac frequencies and their first harmonics were removed by
using RETROICOR (Glover et al., 2000). This technique is similar
to those developed earlier by Josephs et al. (1997) or Hu et al.
(1995). It does not simply filter out a prescribed range of
frequencies, but rather corrects the signal based on the phase of the
cardiac and respiratory cycle in which each image was acquired.
More specifically, for each image, the phase of the respiratory and
cardiac cycles is determined. The sine and cosine of this phase, and
2 times this phase, are then computed, and regressed out of the
data. This is equivalent to reshuffling the data based on the phase
of the cardiac and respiratory cycle in which each image was
acquired, and then fitting a low-order Fourier series to this
reshuffled data. The advantage of this technique over simple
filtering of a prescribed range of frequencies is that it deals with
physiological fluctuations (e.g. cardiac) that are of a higher
frequency than the rate of image acquisition (determined by the
TR), and it allows for a variation in the cardiac and respiration rate.
It does not, however, remove the slower (∼0.03 Hz) signal
changes induced by breath-to-breath variations in the depth and
rate of breathing (i.e. the changes in the envelope of the respiration
measurement). Signals were then converted to percent signal
change by dividing each voxel’s time course by the mean signal
across time and multiplying the result by 100.

Changes in the respiration volume per time (RVT), which
reflect changes in the envelope of the respiration changes as well as
the rate of breathing, were estimated in a manner similar to that
described by Birn et al. (2006). The maxima and minima for each
breath were determined from the respiration belt measurement. The
series of maxima and minima were then each interpolated to the
imaging TR. The respiration period was determined by subtracting
the time between successive maxima, and again this series of
respiration periods was interpolated to the imaging TR. The time
series of RVT changes was then computed by subtracting the
minima from the maxima and dividing by the period for each time
point (Birn et al., 2006).

The average response to a single deep breath was determined in
each subject by deconvolution. In this case, where the inter-
stimulus interval is long and continuous, deconvolution is
equivalent to averaging (in time) the response to each deep breath.
This estimated response function was then averaged over all voxels
with a full F-statistic (of the model fit in the deconvolution) greater
than 2 (pb0.0001). Compliance with the cued single deep breath
was verified by looking at the respiration belt measurement. Three
subjects did not have deep breaths in response to the cues, and the
responses were therefore not used in determining the average
respiration response function. The deconvolved responses were
then averaged across all remaining subjects This average response
represents the respiration-induced signal change to one deep breath
of 3–4 s in duration. In order to obtain a respiration response
function that can be convolved with respiration volume per time
changes, the averaged response was deconvolved using Wiener
deconvolution, implemented in Mathcad (Parametric Technology
Corp., Needham, MA). The difference of two gamma-variate
functions was then non-linearly fit to this deconvolved response.
This fit will be referred to as the “respiration response function”
(RRF).

The time series of RVT changes, RVT(t), were convolved with
three different response functions: (1) a gamma-variate hemody-
namic response function (with parameters according to Cohen
(1997) [Eq. (1)]; (2) a difference of two gamma-variate functions
(the canonical HRF used in SPM) with a post-stimulus undershoot
(from a 20-s duration stimulus) one-fourth the amplitude of the
overshoot (Wellcome Department of Cognitive Neurology, http://
www.fil.ion.ucl.ac.uk/spm) [Eq. (2)]; and (3) with the new RRF
[see Eq. (3)]. For comparison, the three response functions were
also convolved with the ideal stimulus timing, rather than the RVT
time course. These convolved response time series were then fit to
the signal intensity time courses from the other respiration
modulations (breath-holding, cued depth changes, cued rate
changes, and rest) using a linear regression analysis.

IRFGAMðtÞ ¼ kt8:6e�t=0:547 ð1Þ

IRFSPMðtÞ ¼ k 1=Cð6Þð Þt5e�t � 1=Cð16Þð Þ t15e�t
� �

=4 ð2Þ

To assess the goodness of fit of the various response functions,
convolved with either the RVT(t) or the stimulus timing, to the
data, the t-statistic of the fit was averaged over those voxels in the
brain that showed a significant response to breath-holding. More
precisely, this region of interest was determined by those voxels
that showed a significant (FN2, pb0.0001) time-locked response
to the breath-holding task, computed by deconvolution.

Since the latency of the respiration-induced signal change can
vary across the brain, an additional analysis was performed where
the latency of the response was allowed to vary for each voxel.
This was accomplished by repeating the regression analysis 51
times (for shifts from −10 to 40 s in 1-s increments) and choosing
for each voxel the latencies that gave the best positive and the best
negative fit.

Results

Repeated single deep breaths, series of cued deep breaths, cued
rate increases, and breath-holding all resulted in significant signal
changes in gray matter and regions that are known from previous
studies to contain a higher baseline venous blood volume fraction
(see Figs. 1 and 2). A single deep breath resulted in a bimodal
response with an early signal increase, peaking at 3 s, followed by
a pronounced undershoot of even greater magnitude, peaking at
16 s. This response was fit well by a difference of two gamma
variate functions with the equation,

RRFðtÞ ¼ 0:6t2:1e�t=1:6 � 0:0023t3:54e�t=4:25 ð3Þ

The correlation coefficient between the idealized RRF and the
averaged and deconvolved response to a single deep breath was
0.935 (corresponding to a p-value of 3×10−18). In all subjects, the
RVT(t) changes during breath-holding, cued depth changes, and
cued rate changes, convolved with this new “respiration response
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Fig. 1. (a) Respiration-induced signal changes in one slice from a representative subject in response to a deep breath. Colors show regions significantly time-
locked with the cued deep breath (i.e. the F-statistic of the deconvolution analysis). (b) Averaged signal time course in response to a single deep breath. (c) Red:
impulse response function derived from a Wiener deconvolution of the averages response to a single deep breath. Dark blue: ideal fit representing the respiration
response function. Dotted line shows the typical gamma-variate HRF typically used to model activation induced BOLD fMRI signal changes. The light blue line
shows the canonical HRF used on SPM, based on a difference of two gamma-variate functions.
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function” (RRF) accurately modeled the respiration-induced signal
changes (mean t-statistics=7.1 (Breath-holding), 4.1 (Cued depth
change), 3.0 (Cued rate change)) (see Figs. 3 and 4). The majority
Fig. 2. Respiration-induced signal changes in one slice from a representative subj
depth changes (Depth), cued rate changes (Rate); or during rest (Rest). Maps show
respiration response function (i.e. RVT(t)×RRF(t)) to the data.
of the signal change resulted from the undershoot in the RRF,
leading to the pronounced signal overshoot in response to breath-
holding, and the signal decrease in response to increases in
ect during various cued respiration modulations: breath-holding (BH), cued
the fit amplitude of fitting the time series of the RVT convolved with the new



Fig. 3. Red: averaged MRI time courses in response to various respiration modulations: Breath-holding, Cued Depth changes, and Cued Rate changes. Blue
curves: fit of RVT convolved with respiration response function. Green curve: fit of RVT time course convolved with typical gamma-variate used for activation-
induced BOLD responses. Figures on the left are averaged across 11 subjects. Figures on the right show the entire time course (averaged over the brain) for one
representative subject.
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respiration depth or rate. These respiration-induced changes were
generally slower than neuronally induced BOLD fMRI signal
changes, and were therefore not as accurately modeled with the
gamma-variate or canonical SPM hemodynamic response func-
tion [mean t-statistics=0.4 (Breath-holding), −0.1 (Cued depth
change), −0.8 (Cued rate change)]. Interestingly, signal changes
induced by variations in breathing during rest appeared to be
slightly faster and were not modeled as well using either the new
response function or the hemodynamic response functions
typically used to analyze neuronally induced BOLD changes.
Allowing a variation in the latency of the respiration response
resulted in a significantly better fit, particularly for the gamma-
variate response function, canonical SPM response function, and
delta function IRF (i.e. simply a shifted RVT or ideal stimulus
timing).

Fig. 2 shows a map of the fit amplitude of fitting the RVT time
course convolved with the new respiration response function (RRF) to
the cued breathing changes and to rest in one representative subject. The
latency of the response was allowed to vary for each voxel.
Fig. 5 shows a histogram of the optimal latencies for voxels that
showed significant respiration related signal changes, across all
subjects. For all cued respiration conditions and for rest, there is a
large range of optimal latencies across voxels, approximately ±5 s
relative to the average latency. When either the RVT(t) changes or
the ideal stimulus timing alone are used to predict respiration-
induced signal changes, they have to be shifted by approximately
15 s. When convolved with the gamma-variate function, the
resulting waveform must still be shifted by over 10 s in order to
accurately fit the respiration-induced signal changes. Similar shifts
were required for the canonical SPM response function. The
optimal latency for the new RRF is closer to zero. The peak of this
histogram is slightly less than zero for the new RRF, indicating that
the estimated RRF may be too slow for several voxels.

There was a considerable range of optimal latencies across the
brain for the modeled respiration-induced signal changes fit to the
data, approximately ±8 s around the average value. This variability
results primarily from the variability in latency within each subject,
rather than a different average latency across subjects (see Fig. 7).



Fig. 4. T-statistics of fitting either the RVT time course or Ideal stimulus timing convolved with either a gamma-variate (GAM) or the respiration response
function to the data from the breath-holding challenge (Breath Hold), cued depth changes (Depth), cued rate changes (Rate), or Rest. Bars on the right allow for a
shift between −10 and +40 s. For each voxel, the latency that resulted in the best fit was used. (δ) refers to a fit of the RVT time course or ideal response
convolved with a delta function – i.e. the RVT time course or ideal response by itself, allowing for a shift.
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Fig. 6 shows a map of the optimal latencies in one representative
subject, and the corresponding time series for voxels with the
optimal latency (of the ideal response fit to the data) within four
ranges: −10 to −5 s, −5 to 0 s, 0 to 5 s, and 5 to 10 s.

Discussion

The goal of this study was to find a respiration response
function that can best describe the average respiration-induced
response function across the brain, in a similar way that the
typical hemodynamic response functions used in fMRI data
analysis were derived to model the average hemodynamic BOLD
fMRI response.
In this study, we derived an estimate of the “impulse response
function” for respiration-induced MRI signal changes by using
what could approximately be considered to be an impulse (or brief)
breathing change – a single deep breath. The response to this single
deep breath was found to capture sufficient temporal characteristics
to allow modeling of longer durations of breathing depth changes,
breathing rate changes, and even breath-holding. The single deep
breath resulted in an early increase in signal, slightly faster than an
activation-induced BOLD response, followed by a later post-
undershoot, peaking at 16 s. In taking this to be an estimate of the
“impulse response”, we make no explicit assumptions about what
causes these signal increases and decreases. We only assume that all
of the mechanisms resulting in MRI signal changes due to



Fig. 5. Histograms of latency values across the brain that resulted in the best voxel-wise fit to the various respiration-induced responses. Histograms were
computed for each subject, then averaged across subjects.
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variations in breathing rate and depth, including breath-holding, are
present in the MRI signal response to a single deep breath.

Conceptually the most straightforward approach to obtaining
the transfer function (or impulse response function) would have
been to deconvolve the response given the respiration volume per
time estimate. In fact, we attempted this initially, but failed to
obtain a physiologically plausible impulse response. The difficulty
with this approach is that the RVT time course is dominated by low
frequency changes. Deconvolution therefore amplifies the high
frequencies, resulting in an extremely noisy estimate of the impulse
response. This is analogous to estimating an impulse response
function from blocked-design data.

The estimation of an “impulse response function” does make
the implicit assumption that relationship between respiration
changes and MRI signal changes is linear. While this may not
necessarily be the case with the full range of breathing
perturbations, investigating respiration-induced MRI signal
changes as a linear system is an important first step [and similar
to what researchers have assumed in previous studies that have
convolved a gamma-variate response with the respiration timing
(Thomason et al., 2007)]. As shown in this study, using even a
perhaps overly simplistic linear system model, the average
response to one deep breath can accurately predict the responses
to a series of deep breaths, rate changes, breath-holding.

The statistics reported in Fig. 4 reflect the average goodness of
fit (as assessed by a t-statistic) over all voxels that showed a
significant time-locked response to the breath-holding task. The
purpose of this figure is to compare the effectiveness of the various
response functions in fitting the average signal changes in the
different cued breathing runs, and to show that all of the cued
breathing variations resulted in significant signal changes. An
average over the whole brain would result in a smaller average t-
statistic, since not all brain regions are significantly affected by
respiration changes (cf., Birn et al., 2006 and Fig. 2). This could
then be falsely interpreted as reflecting a nonsignificant effect of
breathing variations on MRI signal intensity time courses. The
breath-holding task was used to determine this region of interest
(ROI), since it is the most commonly studied respiration variation,
it is known to induce robust signal changes, and it produced the
strongest and most reliable signal changes in our study. The values



Fig. 6. Left panels: Maps showing the optimal latency for each voxel in fitting the RVT time course (RVT(t)) convolved with RRF to the different cued respiration
changes (Breath Hold, Depth changes, Rate changes, and Single Deep Breath). These values reflect the amount that the RVT(t)×RRF had to be shifted in order to
result in the optimal fit. Right panels: average signal intensity time courses for voxels with the optimal latency within four ranges: (−10 to −5 s, −5 to 0 s, 0 to 5 s,
and 5 to 10 s).
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in Fig. 4 therefore reflect the average t-statistic of fitting each
response function over those regions that show a strong breath-
holding-induced response, regardless of the shape of that response.
Note that this ROI is determined purely by the significance of the
signal changes time locked to the cued breath-holding (as
measured by the full F-statistic in the deconvolution), not by the
significance of a particular response function.

In general, using the ideal stimulus timing was similar to using
the time series of RVT changes in the convolution (Fig. 4), but
there was some variability between subjects and between tasks.
This is likely a reflection of how well the subject performed the
task, and how accurately the time series of RVT changes, estimated
from only one respiration belt, model arterial CO2 changes and
resulting blood flow and blood oxygenation changes. The time
series of RVT changes are admittedly a simplistic estimate of the
arterial CO2. A more accurate estimate might be obtained with two
respiration belts, one around the abdomen and one around the
chest, or by monitoring end-tidal CO2. The use of only one belt,
however, is considerably easier, as the device and the procedure for
acquiring this data are often supplied by the scanner manufacturer.



Fig. 7. Histograms of the latency of fitting the RVT time course to each voxel ranging from −10 to +40 s (vertical axis), for different tasks and for different runs
across subjects (horizontal axis). Each subject has a spread of latency of several seconds in the cued breathing variation runs (B.H.=breath hold, Depth=cued
depth changes, Rate=cued rate changes, Single Deep=cued single deep breath, Rest= resting run).
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An additional source of variability is that the MRI signal can be
influenced by other respiration related mechanisms (e.g. intrathor-
acic pressure changes), which are not fully reflected in the RVT
time course measurement. In addition, the finding that the ideal
(cued) stimulus timing can be convolved with the RRF to obtain a
good fit to the MRI signal changes induced by cued respiration
changes suggests that this response function can also be used in
studies where the cued respiration changes are not explicitly
measured.

The data in this study were acquired at a relatively short TR
(500 ms) and large flip angle (90°). This can enhance the signal
changes from blood flowing into the slice, and thereby increase the
amplitude, and possibly the dynamics, of physiologically induced
fluctuations. It is possible that the spatial variation of this inflow
effect could explain some of the spatial variability of the
respiration related signal change. The dynamics of the average
breath-holding-induced change, however, appears similar to that
measured in previous studies which used a 2-s TR. It is therefore
expected that the respiration response function derived in this study
will also apply to studies with longer TRs.

Previous studies have implicated several brain regions that are
involved in the conscious control of breathing. These include the
primary sensory and motor cortexes, supplementary motor area,
cerebellum, thalamus, caudate nucleus, globus pallidus, and
medulla (McKay et al., 2003). It is therefore possible that some
of the MR signal changes time-locked to the cued respiration
changes, such as the single deep breath, may be neuronal in origin.
The volume imaged in this study, however, consisted of only six
axial slices positioned at the level of the visual cortex, and did not
extend into the primary motor cortex. Furthermore, the respiration
response was averaged over all voxels that showed a significant
time-locked response to a breath-holding challenge. These
included most of the gray matter and are typically believed to
reflect more general blood flow and oxygenation changes. A
neuronally induced BOLD response is therefore likely to be only a
small contribution to the overall respiration modulation-induced
signal change.

The relatively poor fit of the new respiration response function
to resting fluctuations in breathing was at first puzzling. After all,
in a previous publication, we showed that RVT changes were
significantly correlated with MR signal changes during rest (Birn et
al., 2006). In this previous study, however, the RVT time course
was shifted in time by several seconds (on average 5.4 s) in order
to obtain a good fit. Furthermore, this latency varied in different
regions of the brain. In order to compare the current results with the
results of the previous study, we again allowed the latency to vary
in each voxel. When this was done, all of the ideal response
functions (the gamma-variate, the canonical SPM response
function, the new respiration response function, and a delta
function) convolved with the RVT time course or the stimulus
timing resulted in a significant fit to the MRI data in similar regions
of the brain. It is important to note, however, that the RVT time
course convolved with the typical neuronal-induced BOLD
gamma-variate function only resulted in a significant fit when
shifted on average by about 10 s. Such a large temporal shift
cannot be accomplished by simply including the derivative of the
ideal response as another regressor (Henson et al., 2002). This
large latency also offers hope that respiration-induced signal
changes can be separated from task-induced BOLD signal changes
in the event that respiration changes are synchronized with the task.

This latency analysis showed that the signal changes induced
by variations in breathing during rest appeared to be slightly faster
(see Fig. 4). For most of the voxels, the best fit occurred when the
RVT time course was shifted by 8 s, when the RVT time course
convolved with the gamma-variate was shifted by 3 s, or when the
RVT time course convolved with the RRF was shifted by −8 s. In
other words, the respiration-induced signal changes during rest
were slower than the typical hemodynamic response to neuronal
activation, but faster than the signal changes in response to cued
respiration changes. It is unclear what the source of this difference
between cued and resting breathing responses is, but it may reflect
different physiological processes governing cued versus natural
breathing changes.

The latency and temporal evolution of the average respiration-
induced signal change was found to vary across the brain by
several seconds. This could reflect different underlying blood
vasculature (e.g. vessel size, type, blood volume fraction).
Alternatively, the spatial variation in latency may reflect different
mechanisms of respiration-induced MR signal changes. The signal
changes in some areas may in fact be a BOLD fMRI response to
neuronal activation associated with breathing variations, which
have a different latency. A closer look at the averaged responses to
the different respiration challenges (Fig. 6) shows that the variation
in latency is driven by a difference in the width of the response,
rather than a large difference in the onset time. For example, in
response to a 20-s breath-hold, the MRI signal in some areas
returns to baseline within 20 s of resuming normal breathing, while
in other areas the signal continues to increase for another 20 s, and
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only then slowly returns to baseline. The spatial variation in the
latency of the respiration-induced response also raises the
interesting possibility that the average response to the single deep
breath could be used as the RRF for each voxel. In the current
study, however, the averaged responses to only 14–20 deep breaths
(spaced apart by 30–40 s) were too noisy to be used as a response
function to accurately predict respiration-induced signal changes.
An additional consequence of this latency variability is a potential
broadening of the averaged respiration response, when the signal
changes are averaged over the brain. The variation of this latency
across the brain also suggests that when modeling the respiration-
induced changes, a variable latency must be taken into account.
While a slight improvement can be obtained by using a single
regressor with a variable latency (but which is kept constant across
space), a better fit can be obtained by allowing the latency to vary
for each voxel (see Fig. 4).

If the spatial variation in the shape and latency of the response
is consistent across subjects, then a region-specific response
function could be derived and applied to each voxel. This,
however, would require more extensive whole-brain studies on
multiple subjects, and the reliability of this voxel-specific response
function would have to be assessed. The focus of the current
experiment was the first step in modeling the MR signal changes
induced by changes in respiration – deriving a single response
function that could be used to model the average response across
the brain. This single response function provided a much better fit
to respiration-induced signal changes compared to other response
functions more commonly used to model activation-induced
BOLD fMRI signal changes.

The average response to single deep breath could potentially
reveal interesting and important physiological information – the
vascular response to a brief stress. It is easy for the subject to
perform, and several time constants can be derived from the
response (e.g. the onset latency, time to peak, and duration of the
undershoot). Additionally, the variability of the these time
constants across space may reflect variations in the underlying
blood vessels. For this to be clinically relevant, it will, of course,
necessitate a more complete physiological understanding of the
mechanisms leading to the signal increases and decreases.

Conclusion

Using the average response to a single deep breath, we have
determined a new “respiration response function” that can be used
to model respiration-induced signal changes across a range of cued
breathing manipulations. This response function provides a
significantly better fit, on average, to the signal changes induced
by cued breathing variations than hemodynamic response functions
typically used to model BOLD fMRI signal changes. When latency
is allowed to vary, the fit is improved, which may result from a
spatial variability of the respiration-induced response. Future
studies should therefore be designed to more closely examine the
spatial variations of this response function.

Accurately modeling respiration-induced signal changes is
important and practically useful for several reasons. First, changes
in breathing rate and depth can cause significant signal changes
that can lead to both false positives (when correlated with a
functional task) or false negatives. Removing these artifactual
fluctuations can lead to an improved detection of true BOLD fMRI
signal changes and a reduction of false positives. Filtering these
slower respiration-induced signal changes is also a crucial step
before performing functional connectivity analysis. Additionally,
the use of these response functions, at the appropriate latencies,
will result in a more accurate determination of respiration-induced
signal change amplitudes across the brain and across the subjects.
This will be particularly important when respiration-induced signal
changes, such as breath-holding, are used in order to calibrate the
spatial and inter-subject variability of the BOLD response
(Bandettini and Wong, 1997; Cohen et al., 2004; Davis et al.,
1998; Hoge et al., 1999; Thomason et al., 2007).
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