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Classification Accuracy V8. Dimensionality of Feature Space

Classification accuracy as a function of number of metrics entering the

* During resting scans, subjects continually engage and transition between dif- clustering analysis for all window lengths

ferent cognitive states such as visual imagery, inner speech, etc. [1].

EXEESEEN

The figure to the left shows average classification accuracy (as measured by the ARI

: GOOD | metric) versus the number of network metrics entering the analysis for all subjects and
* Whole-brain connectivity matrices contain sufficient information to classity '|5H T | | window lengths (WL).
similar cognitive states (e.g., silent signing, memory tasks, arithmetic computa- 07 ‘ﬁ“' : MOBERATE 4 Highest accuracy levels were reached for WL=90s, the window length used for the

tions, etc. ) with high accuracy levels [2,3]. However, the dimensionality of the sorting of metrics based on their discriminative value.

feature space associated with the whole-brain connectome makes classitication
and interpretation of results very challenging,
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* Highest accuracy levels were reached using less than 10% ot available metrics.

* Classification accuracy 1s worse than when classification was attempted based on

Adjusted Rand Index (ARI)
o
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Classification Accuracy as measured by

04 whole-brain connectivity matrices:
* Novel methods are needed to reduce the dimensionality of the data in a com- —— . . :
. . . o 03 TABLE 1. Classification for Different Analysis Window Length RRnEEsaE
pletely unsupervised fashion, without compromising accuracy. Such methods Methods 180s 90s 60s 45 30s 155 | subjects
. . . . . 02 Whole-brain ROI-to-ROI Connectivity [3] 1+0 0.99+0.01 [0.97+0.02 [0.92+0.03 [0.86+0.04 |0.64 +0.05 22
may allow understandmg of which reglons/ COIlneCtIVlty patterns are most Whole-brain ICA-to-ICA Connectivity [poster #1800] 1+0 [0.91+0.04 |0.84+0.05 [0.82+0.05 |0.68+0.04 |0.34+0.04 11
. e Network Metrics Approach 0.71+0.07 (0.78+0.05 (0.44+0.04 [0.29+0.03 [0.21+0.03 N/A 15
characteristic of each state. 01 .. . 3 1. .
* CGommonalities in ROIs and metrics across “halt + 17 subjects were obtained for a

0 500 200 600 300 1000 1200 dimensionality space of 218 metrics (15% of available metrics). These commonalities

Dimensionality of Feature Space (Number of Network Metrics)

* Graph theory metrics [4] are usetul tools that provide compact descriptions 1400

of the functional organization ot the brain at a given moment in time. Howev-

are shown below.

er, 1t 18 not yet clear which graph theory metrics are most appropriate to de-
scribe the connectivity patterns associated with difterent cognitive states.

Most Informative Regions of Interest across Subjects
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Objectives

* Find a minimal, yet optimal, set of graph theory metrics that help reduce the
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* Compare classification accuracy based on whole-brain connectivity vs. that
based on network metrics.
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Experiment Overview Local Efficiency

Local Efficiency

Eigenvector Centrality

— 10 features with the highest probability of occurrence in the literature for each ROI according to the Neurosyth database [7].

- Subjects continuously perform and transition between 4 distinct tasks
throughout an tMRI scan

- The brain 1s parcellated into 132 tunctionally homogeneous ROIs MOSt Informatlve NEtWOl'k Metl’lCS aCross Sub]ects

CLUSTERING METRICS

Degree to which nodes tend to cluster together

CENTRALITY METRICS
Relative importance of a node within a graph
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- Time-series are broken into non-overlapping windows aligned with the tasks
- Connectivity matrices are computed for each window
- Select network metrics are computed

- Metrics are ranked based on their discriminative ability Lower Higher
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Fraction of a node’s neighbors that [|Inverse of average shortest path
are neighbors to each other. length connecting all neighbors

CONCLUSIONS

* Metric-based classification did not reach the levels of

- Cognitive state classification 1s attempted using different sets of metrics

0.83

Highest Betweenness

- Classification accuracy 1s measured using the Adjusted Rand Index [J]

Number of edges emanat- || The fraction of all shortest paths in

the network that contains given node.

Normalized eigenvector for the princi-

ing from a node. pal eigenvalue of the adjacency matrix.

Data Acquisition and Preprocessing

accuracy previously obtained based on direct

Data Collection Parameters Segment time-series into

- T1-weighted MP-RAGE - 25 min & 24 sec task paradigm Step 2: Compute 3 connectivity matrices | |reflect the differences 1n connectivity patterns across

. Step 1: whole-brain connectivity matrices (see 'lable 1).
- 15 subjects (self reported Functional: S windows aligned with task
.J P GR-EPI . : - Windows lengths of 180, 90, 60, 45, and . .

. ﬁ?{&hﬁ%g%% - TR = 1 5t TE — 95ms | 30 seconds analyzed * Measures of centrality and local clustering are among

_ Anatomical: - 29 x2x 2 mm | the most informative, suggesting that such metrics best
° |
|
|

NORMALIZED

for each window
- Binary and absolute normalized

matrices are thresholded; the 70%
strongest connections are kept

cognitive states.
Task Paradigm

ZED| BINARY

* Global brain measures (e.g., density, assortativity, etc.)

Rest: passively stare at crosshair and let did not provide any consistent discriminative value

mind wander. aACross states.
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Step 3 Graph Theory Network Met oo
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Math: Press button to select correct § § § § § $ § $ : : . : :
. . ‘scriminati 1 1zed, higher-order nitive regions (for this gr t
answer (left/right) for the given opera- = = = _ _ u _ = discriminative capability ed, higher-o .de cognitive reg .O s (for this g oup o
tion. — - - - = = = — - The average distance between self-reported right handed subjects), suggesting that
= = = - - - = . metric values for windows of different | | jy ot informative changes occur outside of primary
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Data Preprocessing | = I The sort index for the 90 sec windows was applied to metric vectors for all windows. to least discriminative
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