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served dynamic behavior of resting-state connectivity patterns

(Chang and Glover, 2010).

ROIs according to the Laird et al. (2011) functional network templates.

RESULTS

Least Stable

Several recent studies have shown how patterns of rstMRI con-

nectivity vary substantially even over the duration of a single
scan (Chang and Glover, 2010;Handwerker et al., 2012;Hutchi-

son et al., 2013), thereby calling into question the assumption of
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temporal stationarity even over short imescales. Similarly; other
studies have explored how scan duration attects the reproducibil-
ity of rstMRI connectivity patterns (Van Dyk et al., 2010;Birn et
al., 2013). However, most of these studies have focused their
analysis on a handtul of representative connections and net-

works. Given the large variability of functional roles and connec-

tion strengths across the human brain connectome, it can be ex-
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. tions. 364 connections fell into this group, with148 corresponding to with-  and frontal regions. 23 connections fell into this group. The fronto-parietal net- this group. Connections that show temporary negative behavior in a consistent
of mterest. in-network connections and 216 corresponding to across-network connections.  work 1s composed of flexible hub regions that can reconfigure their functional manner across subjects involve the IPL hub region, or are artifacts from GSF
'These connections may have an anatomical basis. connectivity to participate 1n a great variety of externally driven tasks regression (see Figure 8).
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To overcome the limitations derived from short scan durations,
in this study rstMRI data were collected in 12 participants, who
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were scanned continuously for 60 minutes at a temporal resolu-
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