Spatial, Temporal, and Interpretive Limits of Functional MRI

Peter A. Bandettini, Ph.D

Unit on Functional Imaging Methods & 3T Neuroimaging Core Facility

Laboratory of Brain and Cognition National Institute of Mental Health

<u>Anatomic</u>

Functional

Echo-Planar Imaging

Single Shot Imaging

EPI Readout Window

 ≈ 20 to 40 ms

Imaging System Components

1991-1992

1992-1999

2 G/cm, 350 T/m/s

4 G/cm, 150 T/m/s

The use of fMRI to Investigate Brain Function

Where?

When?

How much?

How to get the brain to do what we want it to do in the context of an fMRI experiment?

A Primary Challenge:

...to make progressively more precise inferences using fMRI without making too many assumptions about non-neuronal physiologic factors.

G. 43. Middle temporal gytus. Female: 60 years, (1) Principal intracortical vein. The branches length regularly decreases from deep wards superfixed votical regions: thus, the vascular territory of the principal vein has a conical appearance (dotted line) (×28).

• Contrast in FMRI

Hemodynamic Specificity

• The Hemodynamic Transfer Function

Location, Latency, Magnitude

• Best Results So Far

Temporal Resolution, Spatial Resolution

Neuronal Activation Input Strategies

Block Design Phase and Frequency Encoding Orthogonal Designs Parametric Designs Event-Related Designs Free Behavior Designs • Contrast in FMRI

Hemodynamic Specificity

• The Hemodynamic Transfer Function

Location, Latency, Magnitude

• Best Results So Far

Temporal Resolution, Spatial Resolution

• Neuronal Activation Input Strategies

Block Design Phase and Frequency Encoding Orthogonal Designs Parametric Designs Event-Related Designs Free Behavior Designs

Contrast in Functional MRI

- Blood Volume
 - Contrast agent injection and time series collection of T2* or T2 weighted images
- BOLD
 - Time series collection of T2* or T2 weighted images

Perfusion

- T1 weighting
- Arterial spin labeling
- CMRO₂
 - BOLD and Perfusion w/
 - **Normalization to Global Perfusion Change**

Photic Stimulation

MRI Image showing activation of the Visual Cortex

From Belliveau, et al. Science Nov 1991

MSC - perfusion

Susceptibility-Induced Field Distortion in the Vicinity of a Microvessel \perp to B₀.

BOLD Contrast in the Detection of Neuronal Activity

Cerebral Tissue Activation

Local Vasodilation

Increase in Cerebral Blood Flow and Volume Oxygen Delivery Exceeds Metabolic Need

Increase in Capillary and Venous Blood Oxygenation

Decrease in Deoxy-hemoglobin

Deoxy-hemoglobin: paramagnetic Oxy-hemoglobin: diamagnetic

Decrease in susceptibility-related intravoxel dephasing

Increase in T2 and T2*

Local Signal Increase in T2 and T2* - weighted sequences

The BOLD Signal

Blood Oxygenation Level Dependent (BOLD) signal changes

Alternating Left and Right Finger Tapping

Creating a Functional Image

Signal Time Course

Reference Function

Х

Cross Correlation Image

<u>Cross Correlation Image</u> Anatomical Image

Perfusion / Flow Imaging

EPISTAR

FAIR

TI (ms)FAIREPISTAR200

Resting ASL Signal

Comparison with Positron Emission Tomography

PET: $H_2^{15}O$

Perfusion

Activation

Anatomy

BOLD

Perfusion

Hemodynamic Specificity

Hemdodynamic Stress Calibration

5% CO2

12% 02

CMRO₂-related BOLD signal deficit:

Simultaneous Perfusion and BOLD imaging during graded visual activation and hypercapnia

N=12

Hoge, et al.

Hoge, et al.

CBF-CMRO₂ coupling

Characterizing Activation-induced CMRO₂ changes using calibration with hypercapnia

Hoge, et al.

Computed CMRO₂ changes

Subject 1

Subject 2

Quantitative Measurements of Cerebral Metabolic Rate of Oxygen (CMRO2) Using MRI: A Volunteer Study

Honeva AN¹, Weili LIN², Azim CELIK³, Yueh Z. LEE⁴ ¹Washington University, 600 Airport Road, Chapel Hill, NC USA; ²UNC-Chapel Hill, Department of Radiology, CB#7515, Chapel Hill, NC USA; ³GE Medical Systems, ; ⁴UNC-Chapel Hill, ;

Higher Signal to Noise in a single image does not necessarily translate to higher Signal to Noise over time.

0.25 Hz Breathing at 3T

0.68 Hz Cardiac rate at 3T

Temporal S/N vs. Image S/N

N. Petridou

Fit curve: Pos: 22.3478 Nrep + 373.782 -- Neg: 11.6126 Nrep + 30.8055 Fit corr. coeff. (pos, neg) : (0.948073, 0.989839).

/nfs/neon/usr/people/ziad/Programs/matlab/scripts/last_ver//N_vs_Nrep2.m

• Contrast in FMRI

Hemodynamic Specificity

• The Hemodynamic Transfer Function

Location, Latency, Magnitude, Linearity

• Best Results So Far

Temporal Resolution, Spatial Resolution

• Neuronal Activation Input Strategies

Block Design Phase and Frequency Encoding Orthogonal Designs Parametric Designs Event-Related Designs Free Behavior Designs

Hemodynamic Transfer Function

MRI Signal

Latency

Magnitude

Observed Responses

BOLD response is nonlinear

Short duration stimuli produce larger responses than expected

Results – visual task

Results – visual task

Nonlinearity

Magnitude

Latency

Results – motor task

Results – motor task

Nonlinearity

Magnitude

Latency

Different stimulus "ON" periods

Brief stimulus OFF periods produce smaller decreases than expected

Sources of this Nonlinearity

Neuronal

X

- Hemodynamic
 - Oxygen extraction
 Blood volume dynamics

BOLD Correlation with Neuronal Activity

Logothetis et al. Nature, 412, 150-157

Varying "ON" and "OFF" periods

Rapid event-related design with varying ISI

MM_MM_M_M_M_M_M_M_M_M_25% ON

75% ON

Varying "ON" and "OFF" periods

Auditory Cortex

Motor Cortex

• Contrast in FMRI

Hemodynamic Specificity

• The Hemodynamic Transfer Function

Location, Latency, Magnitude

• Best Results So Far

Temporal Resolution, Spatial Resolution

• Neuronal Activation Input Strategies

Block Design Phase and Frequency Encoding Orthogonal Designs Parametric Designs Event-Related Designs Free Behavior Designs

Time Course Comparison Across Brain Regions 0.75 0.50 0.25 0

TIME (sec)

12

13

Latency

Magnitude

Regions of Interest Used for Hemi-Field Experiment

Right Hemisphere

Left Hemisphere

Hemi-field with 500 msec asynchrony

Average of 6 runs Standard Deviations Shown

Single Shot Imaging

EPI Readout Window

 ≈ 20 to 40 ms

Multishot Imaging

Window 2

EPI

Multi Shot EPI

Partial k-space imaging

Single - Shot EPI at 3T: Half NEX, 256 x 256, 16 cm FOV

Fractional Signal Change

2.5 mm² 1

1.25 mm²

0.83 mm² 0.62 mm²

ODC Maps using fMRI

 Identical in size, orientation, and appearance to those obtained by optical imaging¹ and histology^{3,4}.

¹Malonek D, Grinvald A. *Science* 272, 551-4 (1996). ³Horton JC, Hocking DR. *J Neurosci* 16, 7228-39 (1996). ⁴Horton JC, et al. *Arch Ophthalmol* 108, 1025-31 (1990).

Why short is better than long

It is argued that fMRI cannot achieve submillimeter functional resolution because a saturated hyperoxic vascular response to neural activity spreads over many millimeters^{1,2}.

However, optical imaging has demonstrated that the hyperoxic response can yield well-localized maps when using short duration stimuli (<5 sec)¹.

The vascular response to brief neural stimulation

¹Malonek D, Grinvald A. Science 272, 551-4 (1996). ²Kim D-S, Duong T, Kim S-G. Nat Neurosci 3, 164-9 (2000). • Contrast in FMRI

Hemodynamic Specificity

• The Hemodynamic Transfer Function

Location, Latency, Magnitude

• Best Results So Far

Temporal Resolution, Spatial Resolution

Neuronal Activation Input Strategies

Block Design Phase and Frequency Encoding Orthogonal Designs Parametric Designs Event-Related Designs Free Behavior Designs

- 1. Block Design
- 2. Frequency Encoding
- 3. Phase Encoding
- 4. Single Event
- 5. Orthogonal Block Design
- 6. Free Behavior Design.

- 1. Block Design
- 2. Frequency Encoding
- 3. Phase Encoding
- 4. Single Event
- 5. Orthogonal Block Design
- 6. Free Behavior Design.

DeYoe et al.

- 1. Block Design
- 2. Frequency Encoding
- 3. Phase Encoding
- 4. Single Event
- 5. Orthogonal Block Design
- 6. Free Behavior Design.

spectral density

c.c. > 0.5 with spectra

- 1. Block Design
- 2. Frequency Encoding
- 3. Phase Encoding
- 4. Single Event
- 5. Orthogonal Block Design
- 6. Free Behavior Design.

- 1. Block Design
- 2. Frequency Encoding
- 3. Phase Encoding
- 4. Single Event
- 5. Orthogonal Block Design
- 6. Free Behavior Design.

Detectability – constant ISI

Visual Activation Paradigm: 1, 2, & 3 Trials

0 sec

0 sec2 sec4 sec

20 sec

20 sec

Response to Multiple Trials: Subject RW

Detectability vs. Average ISI

Detectability

Estimation accuracy vs. average ISI

Speaking - Blocked Trial

fMRI during tasks that involve brief motion

Event-Related Design

Overt Word Production

Motion-Decoupled fMRI: Functional MRI during of overt word production

"block-trial" paradigm

Motion induced signal changes resemble functional (BOLD) signal changes

"single-trial" paradigm

Motion induced and BOLD signal changes are separated in time

R.M. Birn, et al.

Tongue Movement

Jaw Clenching

Constant ISI

Speaking - ER-fMRI

Swallowing - Event-Related

ODC Maps using fMRI

 Identical in size, orientation, and appearance to those obtained by optical imaging¹ and histology^{3,4}.

¹Malonek D, Grinvald A. *Science* 272, 551-4 (1996). ³Horton JC, Hocking DR. *J Neurosci* 16, 7228-39 (1996). ⁴Horton JC, et al. *Arch Ophthalmol* 108, 1025-31 (1990).

Why short is better than long

It is argued that fMRI cannot achieve submillimeter functional resolution because a saturated hyperoxic vascular response to neural activity spreads over many millimeters^{1,2}.

However, optical imaging has demonstrated that the hyperoxic response can yield well-localized maps when using short duration stimuli (<5 sec)¹.

The vascular response to brief neural stimulation

¹Malonek D, Grinvald A. Science 272, 551-4 (1996). ²Kim D-S, Duong T, Kim S-G. Nat Neurosci 3, 164-9 (2000).

- 1. Block Design
- 2. Frequency Encoding
- 3. Phase Encoding
- 4. Single Event
- 5. Orthogonal Block Design
- 6. Free Behavior Design.

Example of a Set of Orthogonal Contrasts for Multiple Regression

- 1. Block Design
- 2. Frequency Encoding
- 3. Phase Encoding
- 4. Single Event
- 5. Orthogonal Block Design
- 6. Free Behavior Design.

Free Behavior Design

Use a continuous measure as a reference function:

Task performance
Skin Conductance
Heart, respiration rate...
Eye position
EEG

Resting Hemodynamic Autocorrelations

The Skin Conductance Response (SCR)

Skin Conductance Dynamics

Boucsein, Wolfram (1992). Electrodermal Activity. Plenum Press, NY
Venables, Peter, (1991). Autonomic Activity ANYAS 620:191-207.

Brain activity correlated with SCR during "Rest"

• Contrast in FMRI

Hemodynamic Specificity

• The Hemodynamic Transfer Function

Location, Latency, Magnitude

• Best Results So Far

Temporal Resolution, Spatial Resolution

Neuronal Activation Input Strategies

Block Design Phase and Frequency Encoding Orthogonal Designs Parametric Designs Event-Related Designs Free Behavior Designs

Additional Thanks To... Eric Wong, UCSD **Robert Savoy, MGH Richard Hoge, MGH** Randy Buckner, Wash. U. Ted DeYoe, MCW Sue Courtney, Johns Hopkins L **Rasmus Birn, NIH** Ziad Saad, NIH Patrick Bellgowan, NIH