Latest Developments in fMRI

Peter A. Bandettini, Ph.D

Unit on Functional Imaging Methods & 3T Neuroimaging Core Facility

Laboratory of Brain and Cognition National Institute of Mental Health The use of fMRI for the Investigation of Brain Function and Physiology

•Where?

•When?

•How much?

•How to get the brain to do what we want it to do in the context of an fMRI experiment? (*limitations*: limited time and signal to noise, motion, acoustic noise)

•How much more information can we obtain?

Physiologic Factors

A Primary Challenge for Observing Brain Activation:

...to make progressively more precise inferences without making too many assumptions about non-neuronal physiologic factors.

(G. 43) Middle temporal gyrus. Female: 60 years, (1) Principal intracortical vein: The branches length regularly decreases from deep wards superficial cortical regions; thus, the vascular territory of the principal vein has a conical appearance (dotted line) (×28).

Contrast in Functional MRI

Blood Volume

 Contrast agent injection and time series collection of T2* or T2 - weighted images

• BOLD

Time series collection of T2* or T2 - weighted images

Perfusion

- T1 weighting
- Arterial spin labeling

Photic Stimulation

MRI Image showing activation of the Visual Cortex

From Belliveau, et al. Science Nov 1991

MSC - perfusion

Susceptibility-Induced Field Distortion in the Vicinity of a Microvessel \perp to B₀.

BOLD Contrast in the Detection of Neuronal Activity

Cerebral Tissue Activation

Local Vasodilation

Increase in Cerebral Blood Flow and Volume Oxygen Delivery Exceeds Metabolic Need

Increase in Capillary and Venous Blood Oxygenation

Decrease in Deoxy-hemoglobin

Deoxy-hemoglobin: paramagnetic Oxy-hemoglobin: diamagnetic

Decrease in susceptibility-related intravoxel dephasing

Increase in T2 and T2*

Local Signal Increase in T2 and T2* - weighted sequences

The BOLD Signal

Blood Oxygenation Level Dependent (BOLD) signal changes

Alternating Left and Right Finger Tapping

Perfusion / Flow Imaging

EPISTAR

TI (ms)FAIREPISTAR200

Resting ASL Signal

Comparison with Positron Emission Tomography

PET: $H_2^{15}O$

MRI: ASL

Pushing the Envelope...

Temporal Resolution
Spatial Resolution
Sensitivity and Noise
Information Content
Implementation

Pushing the Envelope...

Temporal Resolution
Spatial Resolution
Sensitivity and Noise
Information Content
Implementation

<u>Anatomic</u>

Functional

Echo-Planar Imaging

MRI Signal

Word stem completion

Time Course Comparison Across Brain Regions 0.75 0.50 0.25 0

TIME (sec)

12

13

Latency

Magnitude

Regions of Interest Used for Hemi-Field Experiment

Right Hemisphere

Left Hemisphere

Hemi-field with 500 msec asynchrony

Average of 6 runs Standard Deviations Shown

An approach to probe some neural systems interaction by functional MRI at neural time scale down to milliseconds

Seiji Ogawa14, Tso-Ming Lee1, Ray Stepnoski1, Wei Chen5, Xiao-Hong Zhu3, and Kamil Ugurbil5

"Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974; and "Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN 55455

11026–11031 PNAS September 26, 2000 vol. 97 no. 20

Pushing the Envelope...

Temporal Resolution
Spatial Resolution
Sensitivity and Noise
Information Content
Implementation

Single Shot Imaging

EPI Readout Window

 ≈ 20 to 40 ms

Multishot Imaging

Partial k-space imaging

Multi Shot EPI

Single - Shot EPI at 3T: Half NEX, 256 x 256, 16 cm FOV

Single - Shot EPI at 3T: Half NEX 256 x 256, 16 cm FOV

Fractional Signal Change

2.5 mm² 1.

1.25 mm²

0.83 mm² 0.62 mm²

Perfusion

Activation

Anatomy

BOLD

Perfusion

Hemodynamic Specificity

ODC Maps using fMRI

 Identical in size, orientation, and appearance to those obtained by optical imaging¹ and histology^{3,4}.

¹Malonek D, Grinvald A. *Science* 272, 551-4 (1996). ³Horton JC, Hocking DR. *J Neurosci* 16, 7228-39 (1996). ⁴Horton JC, et al. *Arch Ophthalmol* 108, 1025-31 (1990).

Why short is better than long

It is argued that fMRI cannot achieve submillimeter functional resolution because a saturated hyperoxic vascular response to neural activity spreads over many millimeters^{1,2}.

However, optical imaging has demonstrated that the hyperoxic response can yield well-localized maps when using short duration stimuli (<5 sec)¹.

The vascular response to brief neural stimulation

¹Malonek D, Grinvald A. Science 272, 551-4 (1996). ²Kim D-S, Duong T, Kim S-G. Nat Neurosci 3, 164-9 (2000).

Pushing the Envelope...

Temporal Resolution
 Spatial Resolution
 Sensitivity and Noise
 Information Content
 Implementation

Temporal S/N vs. Image S/N

N. Petridou

Pushing the Envelope...

Temporal Resolution
 Spatial Resolution
 Sensitivity and Noise
 Information Content
 Implementation

Auditory Cortex

Motor Cortex

Different stimulus "ON" periods

Brief stimuli produce larger responses than expected

Results – visual task

Results – motor task

Nonlinearity

Magnitude

Latency

Different stimulus "OFF" periods

Brief stimulus OFF periods produce smaller decreases than expected

Sources of this Nonlinearity

Neuronal

- Hemodynamic
 - Oxygen extraction
 Blood volume dynamics

5% CO2

12% 02

CMRO₂-related BOLD signal deficit:

Simultaneous Perfusion and BOLD imaging during graded visual activation and hypercapnia

N=12

Hoge, et al.

Hoge, et al.

CBF-CMRO₂ coupling

Characterizing Activation-induced CMRO₂ changes using calibration with hypercapnia

Hoge, et al.

Computed CMRO₂ changes

Subject 1

Subject 2

Quantitative Measurements of Cerebral Metabolic Rate of Oxygen (CMRO2) Using MRI: A Volunteer Study

Honeva AN¹, Weili LIN², Azim CELIK³, Yueh Z. LEE⁴ ¹Washington University, 600 Airport Road, Chapel Hill, NC USA; ²UNC-Chapel Hill, Department of Radiology, CB#7515, Chapel Hill, NC USA; ³GE Medical Systems, ; ⁴UNC-Chapel Hill, ;

Neuronal Activation Input Strategies

- 1. Block Design
- 2. Frequency Encoding
- 3. Phase Encoding
- 4. Single Event
- 5. Orthogonal Block Design
- 6. Free Behavior Design.

Free Behavior Design

Use a continuous measure as a reference function:

Task performance
Skin Conductance
Heart, respiration rate...
Eye position
EEG

Brain activity correlated with SCR during "Rest"

Pushing the Envelope...

Temporal Resolution
 Spatial Resolution
 Sensitivity and Noise
 Information Content
 Implementation

Motion

Recognize? •Edge effects •Shorter signal change latencies •Unusually high signal changes •External measuring devices

Correct?
Image registration algorithms
Orthogonalize to motion-related
function (cardiac, respiration, movement)
Navigator echo for k-space alignment (for multishot techniques)
Re-do scan

Bypass?Paradigm timing strategies..Gating (with T1-correction)

Suppress? •Flatten image contrast •Physical restraint •Averaging, smoothing

 $\left(\right)$

1 2 3 4 5 6 7

Time (sec)

How to deal with Scanner Noise?

 Clustered volume acquisition Talavage et al.
 Silent sequences

3D z-Shim Method for Reduction of Susceptibility Effects in BOLD fMRI

Gary H. Glover*

SENSE: Sensitivity Encoding for Fast MRI

Klaas P. Pruessmann, Markus Weiger, Markus B. Scheidegger, and Peter Boesiger*

Functional Imaging Methods / 3T Group

Sean Marrett Jerzy Bodurka **Post Docs:** Rasmus Birn Patrick Bellgowan Ziad Saad Graduate Student Natalia Petridou Summer Student: Dan Kelley **Program Assistant:**

Staff Scientists:

lent: uent:

August, 2000

Kay Kuhns