The Hemodynamic Response and More: Advances and Prospects for fMRI

Peter A. Bandettini, Ph.D

Unit on Functional Imaging Methods & 3T Neuroimaging Core Facility

Laboratory of Brain and Cognition National Institute of Mental Health

Alternating Left and Right Finger Tapping

A Primary Challenge:

...to make progressively more precise inferences using fMRI without making too many assumptions about non-neuronal physiologic factors.

IG. 43. Middle temporal gyrus. Lemale: 60 years: (1) Principal intracortical vein. The branches length regularly decreases from deep swards superficial cortical regions: thus, the vascular territory of the principal vein has a conical appearance (dotted line) (×28).

Rasmus Birn Patrick Bellgowan Hauke Heekeren Ziad Saad Marta Maieron Sergio Casciaro James Patterson

Natalia Petridou

Wen-Ming Luh Sean Marrett Jerzy Bodurka Frank Ye

Dan Kelley Elisa Kapler Hannah Chang

Increased:

Spatial Resolution Temporal Resolution Interpretability Sensitivity Robustness

Karen Bove-Bettis Adam Thomas Kay Kuhns Julie Frost

Linearity

Latency

Fluctuations and Sensitivity

"Current" Imaging

Source of the Nonlinearity

Neuronal

Hemodynamic *Miller et al. 1998* – Flow is linear, BOLD is nonlinear *Friston et al.* 2000 – hemodynamics <u>can</u> explain nonlinearity

If nonlinearity is hemodynamic in origin, a measure of this nonlinearity may reflect a spatial variation of the vasculature

Methods

Observed Responses

BOLD response is nonlinear

Short duration stimuli produce larger responses than expected

Compute nonlinearity (for each voxel)

• Area under response / Stimulus Duration

Output Area / Input Area

Nonlinearity

Motor

Results – visual task

response

Results – visual task

Nonlinearity

Magnitude

Latency

Results – motor task

Results – motor task

Nonlinearity

Magnitude

Latency

Reproducibility

Visual task

Experiment 1

Experiment 2

Different stimulus "ON" periods

Brief stimuli produce larger responses than expected

Different stimulus "ON" periods

Brief stimulus OFF periods produce smaller decreases than expected

Sources of this Nonlinearity

Neuronal

- Hemodynamic
 - Oxygen extraction
 Blood volume dynamics

Balloon Model

Varying V0

BOLD Correlation with Neuronal Activity

Logothetis et al. Nature, 412, 150-157

BOLD Correlation with Neuronal Activity

Logothetis et al. Nature, 412, 150-157

Bandettini and Ungerleider, Nature Neuroscience, 4, 864-866

Auditory Cortex

Motor Cortex

(Block design = 1)

Contrast to Noise Images (ISI, SD)

Detectability – constant ISI

Visual Activation Paradigm: 1, 2, & 3 Trials

0 sec

0 sec2 sec4 sec

20 sec

20 sec

20 sec

Response to Multiple Trials: Subject RW

Detectability vs. Average ISI

Detectability
Estimation accuracy vs. average ISI

Varying "ON" and "OFF" periods

Rapid event-related design with varying ISI

MM_MM_M_M_M_M_M_M_M_M_25% ON

MWWM_WWM_MWM_MWM_MWM_MM_50% ON

75% ON

Varying "ON" and "OFF" periods

Linearity

Latency

Fluctuations and Sensitivity

"Current" Imaging

Time Course Comparison Across Brain Regions 0.75 0.50 0.25 0

TIME (sec)

12

13

Latency

Magnitude

Regions of Interest Used for Hemi-Field Experiment

Right Hemisphere

Left Hemisphere

Latency Modulation Application

Imaging Method: Scanner – 3T TR - 1000 ms TE - 30 ms

Behavioral Method:

Stimuli – Six-letter English words and pronounceable non-words. Each word or non-word was rotated either 0, 60,or 120 degrees

Task – Lexical Decision (word / non-word).

Dependent Measures – Percent Correct and Reaction Time.

Hypotheses :

1) Stimulus rotation of 120 degrees will result in:

- a) Longer Reaction Times
- b) Wider IRF in Parietal Lobe
- c) Delayed IRF onset in Left Inferior Frontal cortex

2) Lexical discrimination will result in :

- a) Longer Reaction Times for non-words
- b) Wider IRF in Inferior Frontal cortex for non-words
- c) Delayed IRF onset in Left Middle Frontal Cortex

Mean Impulse Response Functions for Activated Voxels

Rotation Effect

Lexical Effect

Delay Differences from Indivdual Voxels within the Above ROI's

Linearity

Latency

Fluctuations and Sensitivity

"Current" Imaging

Temporal S/N vs. Image S/N

N. Petridou

Temporal vs. Image S/N Optimal Resolution Study

Human data

Petridou et al

Temporal vs. Image S/N Optimal Resolution Study

Phantom data

Petridou et al

Continuously Growing Activation Area

CC Histogram

Inflection Point

Ziad Saad, et al

Small Small & Large only Large only (0.9[°]...2.0)[°] (0.3...5.5)

Resting ASL Signal

Comparison with Positron Emission Tomography

PET: $H_2^{15}O$

MRI: ASL

Resting Hemodynamic Autocorrelations

The Skin Conductance Response (SCR)

Skin Conductance Dynamics

Boucsein, Wolfram (1992). Electrodermal Activity. Plenum Press, NY
Venables, Peter, (1991). Autonomic Activity ANYAS 620:191-207.

Brain activity correlated with SCR during "Rest"

Brain activity correlated with SCR during "Rest"

Linearity

Latency

Fluctuations and Sensitivity

"Current" Imaging

Neuronal Current Imaging

•Neuronal activity is directly associated with ionic currents.

•These bio-currents induce **spatially distributed and transient** magnetic flux density (B) changes and magnetic field gradients (dB/dr).

•In the context of MRI, these currents therefore alter the frequency, and therefore phase , ϕ , of surrounding water protons.

Synchronous activity among large neuronal populations produce **small transient** magnetic field changes which are typically detected on the scalp with Magnetoencephalography (MEG).

Schematic representation of (a) a postsynaptic potential and (b) an action potential as a function of time.

The post synaptic potential lasts for about 10ms, allowing integration of individual fields to create MEG detectable > 100 fT field on surface of skull

Derivation of B field generated in an MRI voxel by a current dipole

Single dendritic tree having a diameter d, and length L behaves like a conductor with conductivity σ . Resistance is R=V/I, where R=4L/(π d² σ). From Biot-Savart:

$$B = \frac{\mu_0}{4\pi} \frac{Q}{r^2} = \frac{\mu_0}{16} \frac{d^2 \sigma V}{r^2}$$

by substituting d = 4 μ m, $\sigma \approx 0.25 \ \Omega^{-1} \ m^{-1}$, V = 10mV, r = 4cm

the resulting B field is: **B≈0.002 f**T

Because B_{MEG} =100fT (or more) is measured by MEG on the scalp, a large number of neurons, (0.002 fT x 50,000 = 100 fT), must coherently act to generate such field. These bundles of neurons produce, within a typical voxel, 1 mm x 1 mm x 1 mm, a field of order:

$$B_{MRI} = B_{MEG} \left(\frac{r_{MEG}}{r_{MRI}}\right)^2 = B_{MEG} \left(\frac{4 \ cm}{0.1 \ cm}\right)^2 = 1600 \ B_{MEG}$$

B_{MRI} ≈0.2nT

Dipole Field in a 1 mm voxe

Can MRI Detect transient B₀ changes On the order of 0.2 nT?

Current Phantom Experiment

MRI phase: $\Delta \phi \cong \gamma \Delta B_{C} TE$
<u>calculated</u> $B_c \parallel B_0$

calculated $|\Delta B_c| || B_0$

В

Correlation image

Measurement

Spectral density image

Single shot GE EPI

$$\Delta \phi \cong 20^{\circ}$$

Experiment (human respiration)

Sources of Phase Noise

- Respiration (chest wall movement)
- cardiac pulsation
- eye movement
- -system instabilities (including eddy currents)

Experiment (human respiration)

TR =1.0 sec

Spectral images

Optimal temporal position for 180 pulse

Spin-echo sequence advantages:

SE sequence improve sensitivity to small and transient $\Delta B(t)$ changes and simultaneously reduces unwanted low-frequency field shift.

Conclusions:

While many unknowns about neuronal-induced current magnitudes and spatial scales remain, the combination of a SE EPI sequence with precisely synchronized stimulation protocol optimizes the ability to detect small and transient magnetic field changes.

Transient or periodic flux density changes as small as 200 pT (0.2 nT) can be detected using MRI.

Linearity

Latency

Fluctuations and Sensitivity

"Current" Imaging