Functional MRI: Past, Present, Future

Peter A. Bandettini, Ph.D

Unit on Functional Imaging Methods & 3T Neuroimaging Core Facility

Laboratory of Brain and Cognition National Institute of Mental Health

Present

Future

Interpretation BOLD models PET correlation Boundary Street Boundary Street Dynamic IV volume
TE dep Pre-undershoot PSF of BOLD
Blood T2 Blood T2 Blo
Hemoglobin SE vs. CO ₂ effect Optical Im. Correlation GE NIRS Correlation Fluctuations Optical Im. Correlation Veins Inflow Balloon Model Electrophys. correlation
Applications Complex motor Mental Chronometry Language Imagery Memory Motor learning Drug effects
BOLD -V1, M1, A1 Stroke V1, V2mapping Priming/Learning AVolume-V1 Plasticity Face recognition
36 82 88 89 90 91 92 93 94 95 96 97 98 <u>99 00 01 02</u>

Present

Future

L. Pauling, C. D. Coryell, (1936) "The magnetic properties and structure of hemoglobin, oxyhemoglobin, and carbonmonoxyhemoglobin." Proc.Natl. Acad. Sci. USA 22, 210-216.

Thulborn, K. R., J. C. Waterton, et al. (1982). "Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field." Biochim. Biophys. Acta. 714: 265-270.

S. Ogawa, T. M. Lee, A. R. Kay, D. W. Tank, (1990) "Brain magnetic resonance imaging with contrast dependent on blood oxygenation." Proc. Natl. Acad. Sci. USA 87, 9868-9872.

R. Turner, D. LeBihan, C. T. W. Moonen, D. Despres, J. Frank, (1991). Echo-planar time course MRI of cat brain oxygenation changes. Magn. Reson. Med. 27, 159-166.

The Techniques

Blood Volume Imaging

BOLD Contrast

Arterial Spin Labeling

Blood Volume Imaging

Contrast agent injection and time series collection of T2* or T2 - weighted images

Blood Volume

Photic Stimulation

MRI Image showing activation of the Visual Cortex

From Belliveau, et al. Science Nov 1991

MSC - perfusion

Susceptibility Contrast

Susceptibility-Induced Field Distortion in the Vicinity of a Microvessel \perp to B₀.

Alternating Left and Right Finger Tapping

~ 1992

K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M.Weisskoff, B. P. Poncelet, D. N. Kennedy, B. E. Hoppel, M. S. Cohen, R.Turner, H. M. Cheng, T. J. Brady, B. R. Rosen, (1992) "Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation." Proc. Natl. Acad. Sci. USA. 89, 5675-5679.

S. Ogawa, D. W. Tank, R. Menon, J. M. Ellermann, S.-G. Kim, H. Merkle, K. Ugurbil, (1992) "Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc. Natl. Acad. Sci. USA." 89, 5951-5955.

P. A. Bandettini, E. C. Wong, R. S. Hinks, R. S. Tikofsky, J. S. Hyde, (1992) "Time course EPI of human brain function during task activation." Magn. Reson. Med 25, 390-397.

BOLD Contrast in the Detection of Neuronal Activity

Cerebral Tissue Activation

Local Vasodilation

Increase in Cerebral Blood Flow and Volume Oxygen Delivery Exceeds Metabolic Need

Increase in Capillary and Venous Blood Oxygenation

Decrease in Deoxy-hemoglobin

Deoxy-hemoglobin: paramagnetic Oxy-hemoglobin: diamagnetic

Decrease in susceptibility-related intravoxel dephasing

Local Signal Increase in T2 and T2* - weighted sequences

The BOLD Signal

Blood Oxygenation Level Dependent (BOLD) signal changes

Simple Right

Simple Left

Complex Right

Complex Left

Imagined <u>Complex</u> Right

Imagined Complex Left

Bandettini et al.

Sensorimotor Mapping

Blood Perfusion

EPISTAR FAIR

TI (ms)FAIREPISTAR200

Resting ASL Signal

Comparison with Positron Emission Tomography

PET: $H_2^{15}O$

Refinements

BOLD Contrast Interpretation

Dynamics, Paradigm Design and Processing

Applications

Refinements

BOLD Contrast Interpretation

Dynamics, Paradigm Design and Processing

Applications

Methods BOLD Baseline Volume IVIM	1.5T,3T, 4 ⁻ ASL	Correlation Analysis Diff. tensor EPI on Clin. Syst.Perf. Quar ∆ CMRO2Surface Rendering Real timeFree-b Real timePhase Mapping Phase Mapping Linear Regression - SPMDeconvolution Z Simultaneous A Simultaneous A	ntification mapping ehavior Designs ograms SENSE -shim 7T ASL and BOLD seline Susceptibility						
Interpretation		BOLD models PET correlation B _o dep. IV vs EV Dynamic IV volu Pre-undershoot PSF of BOLD	ime						
Blood T2		Post-undershoot CE CO	b. Correlation						
Hemoglobin		GE NIRS Correlation Fluctuations Optical In Veins Inflow Balloon Model	m. Correlation Electrophys. correlation						
Applications	BC	Complex motor Mental Chronon Language Imagery Memory Presurgical Children Tum D -V1, M1, A1 Attention Ocular	Metry Emotion Motor learning or vasc. Drug effects						
St	V1, V2mapping Priming/Learning ∆Volume-V1 Plasticity Face recognition								

Gradient - Echo

Spin - Echo

Bandettini et al.

Contrast

2.5 to 3 μ m 3 to 15 μ m 15 to $\infty \mu$ m compartment size

T1 - weighted

T2* weighted

T1 and T2* weighted

Perfusion

Activation

Anatomy

BOLD

Perfusion

Fractional Signal Change

2.5 mm² 1

1.25 mm²

0.83 mm² 0.62 mm²

Refinements

BOLD Contrast Interpretation

Dynamics, Paradigm Design and Processing

Applications

Methods BOLD Baseline Volume IVIM	1.5T,3 A	ST, 4T ⁽	Correlati S Linear Event	on An Surface Phase Regres -relate	alysis _E EPI on e Rend Mappi ssion - ed	Diff. t Clin. Iering ng [SPM	ensor Syst. Real ti Deconv Simul M	Perf. Q △ CMR Free me Va olutior taneou lg ⁺ E	uantifi Co2 ma e-behav enogra n Z-shir is ASL Baselin	cation pping vior De ms 7 and B e Susc	esigns SENSE T OLD eptibil	ity
Interpretation		ן ן ד	$3OLD motors 3_0 dep.$	odels IV vs Pre-	PET (EV under	corre shoo ⁻	lation Dynam ^t PSF	nic IV v of B <u>OL</u>	olume .D			
Blood T2			Post-u	esoluti ndersł	ion De noot	^{p.} Sti Lir	m. Moo nearity	lulatio M	n etab. (Correla	tion	
Hemoglobin		SI G	E vs. ^E NIRS C Veins	CO ₂ orrelat Inflor	effect tion Fl w	: uctua E	ations Balloon	Optica Model	al Im. C Elec	Correla ctrophy	tion ys. cor	relation
Applications s	troke	BOLD ∆Volume	(-V1, M1 V1, -V1	Comple La , A1 V2m	ex mot nguage Presurg napping	or e Ima gical A [.] 9 Pri	Mental agery Childr ttentio ming/L	Chron Mem en Tu n Ocu .earnin	ory Mo umor v Ilar Doi Clinic g	^y Ei otor lea asc. minanc al Pop Perfori	motior arning Drug e :e ulatior mance	n ffects ns predictio
					Plast	ICITY	Face	recogr	hition			
36 82 88 89	90 _	91 92	2 93	94_	95_	96	97_	98_	99	00_	01	02

MRI Signal

Bandettini et al.

Visual Activation Paradigm: 1, 2, & 3 Trials

0 sec

0 sec2 sec4 sec

20 sec

20 sec

Response to Multiple Trials: Subject RW

Auditory Cortex

Motor Cortex

Neuronal Activation Input Strategies

- 1. Block Design
- 2. Frequency Encoding
- 3. Phase Encoding
- 4. Event Related
- 5. Orthogonal Block Design

Example of a Set of Orthogonal Contrasts for Multiple Regression

Refinements

BOLD Contrast Interpretation

Dynamics, Paradigm Design and Processing

Applications

Applications

Clinical Populations

Presurgical mapping Volume/Perfusion assessment Acute stroke characterization

Healthy Volunteers Brain mapping

Past

Present

Future

Methods BOLD Baseline Volume IVIM	1.5T,3	8T, 4T SL	Correlat Linear Even	ion An Surfac Phase Regres t-relate	alysis _D EPI on e Rend Mappir ssion - ed	Diff. te Clin. ering ng I SPM	ensor ^F Syst. Real tir Deconv Simult M	Perf. Quantum Δ CMR Freeme Verton Verton Verton $Q_{\rm f}$ colution $Q_{\rm f}$ aneou $Q_{\rm f}$ E	uantifi O ₂ ma b-beha enogra nZ-shii s ASL Baselin	cation pping vior De m 7 and B e Susc	esigns SENSE T OLD ceptibi	lity		
Interpretation			BOLD m B _o dep.	odels IV vs Pre	PET o EV -unders	correl: shoot	ation Dynam PSF d	ic IV v of BO <u>L</u>	olume D					
Blood T2	Post-undershoot Linearity Metab. Correlation													
Hemoglobin		(SE vs. SE NIRS (Veins	CO ₂ Correla ⁻ Inflo	effect tion Flu w	uctua B	tions alloon	<mark>Optica</mark> Model	al Im. (Elec	Correla ctroph	ition ys. co	rrelat	tion	
Applications s	troke	BOL[∆Volum	0 -V1, M V1 e-V1	Comple La I, A1 , V2n	ex mot nguage Presurg napping Plasti	or e Ima gical At Prir icity	Mental agery Childro tention ming/L Face r	Chron Memo en Tu n Ocu earning recogn	ometr ^{Dry} Mo Imor v lar Do Clinic g ition	y E otor le vasc. minane cal Pop Perfor	motio arning Drug e ce oulatio mance	n effect ns e prec	ts diction	
36 82 88 89	90 9	91 9	2 93	94	95	96	97	98_	99	00	01	0	2	

The Neuroscientists' Challenge:

...to make progressively more precise inferences using fMRI without making too many assumptions about non-neuronal physiologic factors.

⁽G. 4) Middle temporal gytus. Female: 60 years, (1) Principal intracortical sem. The branches length regularly decreases from deep wards superfiscal cortical regions: thus, the vascular territory of the principal sem has a conical appearance (dotted line) (3/28).

Different stimulus "ON" periods

Brief stimuli produce larger responses than expected

Results – visual task

Sources of this Nonlinearity

Neuronal

- Hemodynamic
 - Oxygen extraction
 Blood volume dynamics

BOLD Correlation with Neuronal Activity

Logothetis et al. Nature, 412, 150-157

Bandettini and Ungerleider, Nature Neuroscience, 4, 864-866

An approach to probe some neural systems interaction by functional MRI at neural time scale down to milliseconds

Seiji Ogawa14, Tso-Ming Lee1, Ray Stepnoski1, Wei Chen5, Xiao-Hong Zhu3, and Kamil Ugurbil5

"Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974; and "Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN 55455

11026–11031 PNAS September 26, 2000 vol. 97 no. 20

Time Course Comparison Across Brain Regions 0.75 0.50 0.25 0

TIME (sec)

12

13

Latency

Magnitude

Venograms (3T)

Regions of Interest Used for Hemi-Field Experiment

Right Hemisphere

Left Hemisphere

CMRO₂-related BOLD signal deficit: *Hoge, et al.*

Simultaneous Perfusion and BOLD imaging during graded visual activation and hypercapnia

N=12

Hoge, et al. Computed CMRO₂ Changes

Subject 1

Subject 2

Quantitative Measurements of Cerebral Metabolic Rate of Oxygen (CMRO2) Using MRI: A Volunteer Study

Honeva AN¹, Weili LIN², Azim CELIK³, Yueh Z. LEE⁴ ¹Washington University, 600 Airport Road, Chapel Hill, NC USA; ²UNC-Chapel Hill, Department of Radiology, CB#7515, Chapel Hill, NC USA; ³GE Medical Systems, ; ⁴UNC-Chapel Hill, ;

540 nm

810 nm

R. D. Frostig et. al, PNAS 87: 6082-6086, (1990).

ODC Maps using fMRI

Menon, R. S., S. Ogawa, et al. (1997). "Ocular dominance in human V1 demonstrated by functional magnetic resonance imaging." <u>J Neurophysiol</u> **77**(5): 2780-7.

Temporal vs. Spatial SNR-3T

Temporal vs. Image S/N Optimal Resolution Study

Human data

Phantom data

4mm slice thickness

Petridou et al

S/N

Resting Hemodynamic Autocorrelations

B. Biswal et al., MRM, 34:537 (1995)

Neuronal Activation Input Strategies

- 1. Block Design
- 2. Frequency Encoding
- 3. Phase Encoding
- 4. Event Related
- 5. Orthogonal Block Design
- 6. Free Behavior Design

Free Behavior Design

Use a continuous measure as a reference function:

Task performance
Skin Conductance
Heart, respiration rate...
Eye position
EEG

The Skin Conductance Response (SCR)

Brain activity correlated with SCR during "Rest"

Past

Present

Future

Future

Imaging Methods

Clinical Implementation

Imaging Methods

 Shimming Acoustic Noise Multishot Techniques Increased Gradient Performance Higher Field Strengths • Surface Coil Arrays (SENSE..) Calibration / Quantification Noise / Fluctuations Direct Neuronal Current Imaging

3D z-Shim Method for Reduction of Susceptibility Effects in BOLD fMRI

Gary H. Glover*

2 G/cm, 350 T/m/s

4 G/cm, 150 T/m/s

Current Phantom Experiment

MRI phase: $\Delta \phi \cong \gamma \Delta B_{C} TE$

Neuronal Current Imaging

Clinical Implementation

Real Time fMRI (immediate feedback)
Elipepsy (foci localization)
Metabolic / Vascular Disorders

•fMRI correlation with clinical populations

End of Acquisition

< 1 s to render

Blocked trials: 20 s on/20 s off 8 blocks

Blocks: <u>12345678</u>

Color shows through brain

Correlation > 0.45

Functional Imaging Methods / 3T Group

Sean Marrett Jerzy Bodurka **Post Docs:** Rasmus Birn Patrick Bellgowan **Ziad Saad** Graduate Student Natalia Petridou Summer Student: Dan Kelley **Program Assistant:**

Staff Scientists:

Kay Kuhns

August, 2000