Future Trends

Peter A. Bandettini, Ph.D

Unit on Functional Imaging Methods & 3T Neuroimaging Core Facility

Laboratory of Brain and Cognition National Institute of Mental Health

Interpretation Applications

Interpretation

Applications

Present

Future

Present

Future

Technology MRI	1.5T,3T, 4T Diff. tensor Mg+ 7T EPI on Clin. Syst. Real time fMRI Venography EPI Nav. pulses Quant. ASL SENSE Local Human Head Gradient Coils Quant. ASL Z-shim Baseline Susceptibility ASL Spiral EPI Dynamic IV volume Current Imaging?
Methodology Baseline V IVIM	Correlation Analysis CO2 Calibration Motion Correction Multi-Modal Mapping Parametric Design Multi-Modal Mapping Surface Mapping Free-behavior Designs Phase Mapping Mental Chronometry Linear Regression Deconvolution
Interpretation Blood T2 Hemoglobin	BOLD modelsPET correlationBold dep.IV vs EVASL vs. BOLDBold dep.Pre-undershootPSF of BOLDTE depResolution Dep. Post-undershootExtended Stim. LinearityPost-undershootLinearityMetab. CorrelationSE vs. GECO2 effectNIRS CorrelationNIRS CorrelationFluctuationsOptical Im. CorrelationVeinsInflowBalloon ModelElectrophys. correlation
Applications	Complex motor LanguageMemoryEmotionMotor learningChildrenTumor vasc.Drug effectsBOLD -V1, M1, A1PresurgicalAttentionOcular DominanceVolume - StrokeV1, V2mappingPriming/LearningClinical Populations Δ Volume-V1PlasticityFace recognition
	89 90 91 92 93 94 95 96 97 98 99 00 01 02

Technology MRI	1.5T,3T, 4T Diff. tensor Mg+ 7T EPI on Clin. Syst. Real time fMRI Venography EPI Nav. pulses Quant. ASL SENSE Local Human Head Gradient Coils Quant. ASL Z-shim Baseline Susceptibility ASL Spiral EPI Dynamic IV volume Current Imaging?
Methodology Baseline V IVIM	Correlation Analysis CO2 Calibration Motion Correction Multi-Modal Mapping Parametric Design Multi-Modal Mapping Surface Mapping Free-behavior Designs Phase Mapping Mental Chronometry Linear Regression Deconvolution
Interpretation Blood T2 Hemoglobin	BOLD modelsPET correlationBoundaryBoundaryBoundaryBoundaryBoundaryPre-undershootPost-undershootPSF of BOLDTended StimPost-undershootServerCorrelationServer
Applications	Complex motor LanguageMemoryEmotionMotor learningChildrenTumor vasc.Drug effectsBOLD -V1, M1, A1PresurgicalAttentionOcular DominanceVolume - StrokeV1, V2mappingPriming/LearningClinical Populations Δ Volume-V1PlasticityFace recognition
	89 90 91 92 93 94 95 96 97 98 99 00 01 02

L. Pauling, C. D. Coryell, (1936) "The magnetic properties and structure of hemoglobin, oxyhemoglobin, and carbonmonoxyhemoglobin." Proc.Natl. Acad. Sci. USA 22, 210-216.

Thulborn, K. R., J. C. Waterton, et al. (1982). "Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field." Biochim. Biophys. Acta. 714: 265-270.

S. Ogawa, T. M. Lee, A. R. Kay, D. W. Tank, (1990) "Brain magnetic resonance imaging with contrast dependent on blood oxygenation." Proc. Natl. Acad. Sci. USA 87, 9868-9872.

R. Turner, D. LeBihan, C. T. W. Moonen, D. Despres, J. Frank, (1991). Echo-planar time course MRI of cat brain oxygenation changes. Magn. Reson. Med. 27, 159-166.

Functional MRI Methods

Blood Volume Imaging

BOLD Contrast

Arterial Spin Labeling

Technology MRI	1.5T,3T, 4T Diff. tensor Mg+ 7T EPI on Clin. Syst. Real time fMRI Venography EPI Nav. pulses SENSE Local Human Head Gradient Coils Quant. ASL Z-shim Baseline Susceptibility ASL Spiral EPI Dynamic IV volume Simultaneous ASL and BOLD Current Imaging?
Methodology Baseline V IVIM	Correlation Analysis CO2 Calibration Motion Correction Multi-Modal Mapping Yolume Parametric Design Multi-Modal Mapping Surface Mapping Free-behavior Designs Phase Mapping Mental Chronometry Linear Regression Deconvolution
Interpretation Blood T2 Hemoglobin	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Applications	Complex motor LanguageMemoryEmotionMotor learningChildrenTumor vasc.Drug effectsBOLD -V1, M1, A1PresurgicalAttentionOcular DominanceVolume - StrokeV1, V2mappingPriming/LearningClinical PopulationsA Volume-V1PlasticityFace recognition
	89 90 91 92 93 94 95 96 97 98 99 00 01 02

Blood Volume Imaging

Susceptibility Contrast agent bolus injection and time series collection of T2* or T2 - weighted images

Blood Volume

Photic Stimulation

MRI Image showing activation of the Visual Cortex

From Belliveau, et al. Science Nov 1991

MSC - perfusion

Susceptibility Contrast

Susceptibility-Induced Field Distortion in the Vicinity of a Microvessel \perp to B₀.

Alternating Left and Right Finger Tapping

K. K. Kwong, et al, (1992) "Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation." Proc. Natl. Acad. Sci. USA. 89, 5675-5679.

S. Ogawa, et al., (1992) "Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc. Natl. Acad. Sci. USA." 89, 5951-5955.

P. A. Bandettini, et al., (1992) "Time course EPI of human brain function during task activation." Magn. Reson. Med 25, 390-397.

Blamire, A. M., et al. (1992). "Dynamic mapping of the human visual cortex by high-speed magnetic resonance imaging." Proc. Natl. Acad. Sci. USA 89: 11069-11073.

Correlation analysis, Fourier analysis, t-test, f-test... SPM, AFNI, brain voyager, FIASCO, FSL, free surfer...

Quality of results and importance of the findings depends on type of question asked, experimental method, and analysis method...

BOLD Contrast in the Detection of Neuronal Activity

Cerebral Tissue Activation

Local Vasodilation

Increase in Cerebral Blood Flow and Volume Oxygen Delivery Exceeds Metabolic Need

Increase in Capillary and Venous Blood Oxygenation

Decrease in Deoxy-hemoglobin

Deoxy-hemoglobin: paramagnetic Oxy-hemoglobin: diamagnetic

Decrease in susceptibility-related intravoxel dephasing

Local Signal Increase in T2 and T2* - weighted sequences

The BOLD Signal

Blood Oxygenation Level Dependent (BOLD) signal changes

First Event-related fMRI Results

Blamire, A. M., et al. (1992). "Dynamic mapping of the human visual cortex by high-speed magnetic resonance imaging." Proc. Natl. Acad. Sci. USA 89: 11069-11073.

1992-1999

1991-1992

Blood Perfusion

EPISTAR FAIR

TI (ms)FAIREPISTAR200

Williams, D. S., Detre, J. A., Leigh, J. S. & Koretsky, A. S. (1992) "Magnetic resonance imaging of perfusion using spin-inversion of arterial water." Proc. Natl. Acad. Sci. USA 89, 212-216.

Edelman, R., Siewert, B. & Darby, D. (1994) "Qualitative mapping of cerebral blood flow and functional localization with echo planar MR imaging ans signal targeting with alternating radiofrequency (EPISTAR)." Radiology **192**, 1-8.

Kim, S.-G. (1995) "Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping." Magn. Reson. Med. **34**, 293-301.

Kwong, K. K. et al. (1995) "MR perfusion studies with T1-weighted echo planar imaging." Magn. Reson. Med. 34, 878-887.

Comparison with Positron Emission Tomography

PET: $H_2^{15}O$

Refinements

BOLD Contrast Interpretation

Dynamics, Paradigm Design and Processing

Applications

Refinements

BOLD Contrast Interpretation

Dynamics, Paradigm Design and Processing

Applications

The Neuroscientists' Challenge:

...to make progressively more precise inferences using fMRI without making too many assumptions about non-neuronal physiologic factors.

⁽G. 4) Middle temporal gytus. Female: 60 years, (1) Principal intracortical sem. The branches length regularly decreases from deep wards superfiscal cortical regions: thus, the vascular territory of the principal sem has a conical appearance (dotted line) (3/28).

Technology MRI	1.5T,3T, 4T Diff. tensor Mg+ 7T EPI on Clin. Syst. Real time fMRI Venography EPI Nav. pulses Quant. ASL SENSE Local Human Head Gradient Coils Quant. ASL Z-shim Baseline Susceptibility ASL Spiral EPI Dynamic IV volume Current Imaging?
Methodology Baseline V IVIM	Correlation Analysis CO2 Calibration Motion Correction Multi-Modal Mapping Parametric Design Multi-Modal Mapping Surface Mapping Free-behavior Designs Phase Mapping Mental Chronometry Linear Regression Deconvolution
Interpretation Blood T2 Hemoglobin	BOLD models PET correlation Bo dep. IV vs EV ASL vs. BOLD Bo dep. Pre-undershoot PSF of BOLD TE dep Resolution Dep. Extended Stim. Post-undershoot Linearity Metab. Correlation SE vs. GE CO2 effect NIRS Correlation Veins Inflow Balloon Model Electrophys. correlation
Applications	Complex motor LanguageMemoryEmotionMotor learningChildrenTumor vasc.Drug effectsBOLD -V1, M1, A1PresurgicalAttentionOcular DominanceVolume - StrokeV1, V2mappingPriming/LearningClinical Populations∆ Volume-V1PlasticityFace recognition
36 82 <u>88</u>	89 90 91 92 93 94 95 96 97 98 99 00 01 02

2.5 to 3 μ m 3 to 15 μ m 15 to $\infty \mu$ m compartment size

Gradient - Echo

Spin - Echo

T1 - weighted

Flow weighted

BOLD weighted

T1 and T2* weighted

Flow and BOLD weighted

P. A. Bandettini, E. C. Wong, Echo planar magnetic resonance imaging of human brain activation, *in* "Echo Planar Imaging: Theory, Technique, and Application" (F. Schmitt, M. Stehling, R. Turner, Eds.), p.493-530, Springer -Verlag, Berlin, 1997

P. A. Bandettini, E. C. Wong, Magnetic resonance imaging of human brain function: principles, practicalities, and possibilities, *in* "Neurosurgery Clinics of North America: Functional Imaging" (M. Haglund, Ed.), p.345-371, W. B. Saunders Co., 1997.

Anatomy

BOLD

Perfusion

P. A. Bandettini, E. C. Wong, Magnetic resonance imaging of human brain function: principles, practicalities, and possibilities, *in* "Neurosurgery Clinics of North America: Functional Imaging" (M. Haglund, Ed.), p.345-371, W. B. Saunders Co., 1997.

Partial k-space imaging

Fractional Signal Change

Jesmanowicz, P. A. Bandettini, J. S. Hyde, (1998) "Single shot half k-space high resolution EPI for fMRI at 3T." *Magn. Reson. Med.* 40, 754-762.

Refinements

BOLD Contrast Interpretation

Dynamics, Paradigm Design and Processing

Applications

Technology MRI	Diff. tensor Mg+ 7T EPI on Clin. Syst. Real time fMRI Venography EPI Nav. pulses Quant. ASL SENSE Local Human Head Gradient Coils Quant. ASL Z-shim Baseline Susceptibility ASL Spiral EPI Dynamic IV volume Simultaneous ASL and BOLD Current Imaging?
Methodology Baseline V	Correlation Analysis CO2 Calibration Motion Correction Multi-Modal Mapping Parametric Design Multi-Modal Mapping Surface Mapping Free-behavior Designs Phase Mapping Mental Chronometry Linear Regression Deconvolution
Interpretation Blood T2 Hemoglobin	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Applications	Complex motor LanguageMemoryEmotionMotor learningChildrenTumor vasc.Drug effectsBOLD -V1, M1, A1PresurgicalAttentionOcular DominanceVolume - StrokeV1, V2mappingPriming/LearningClinical Populations Δ Volume-V1PlasticityFace recognition
36 82 88	89 90 91 92 93 94 95 96 97 98 99 00 01 02
Motor Cortex

Auditory Cortex

S. M. Rao et al, (1996) "Relationship between finger movement rate and functional magnetic resonance signal change in human primary motor cortex." *J. Cereb. Blood Flow and Met.* 16, 1250-1254.

J. R. Binder, et al, (1994). "Effects of stimulus rate on signal response during functional magnetic resonance imaging of auditory cortex." *Cogn. Brain Res.* 2, 31-38

P. A. Bandettini, K. K. Kwong, T. L. Davis, R. B. H. Tootell, E. C. Wong, P. T. Fox, J. W. Belliveau, R. M. Weisskoff, B. R. Rosen, (1997). "Characterization of cerebral blood oxygenation and flow changes during prolonged brain activation." *Human Brain Mapping* 5, 93-109.

R. L. Savoy, et al., Pushing the temporal resolution of fMRI: studies of very brief visual stimuli, onset variability and asynchrony, and stimulus-correlated changes in noise [oral], 3'rd Proc. Soc. Magn. Reson., Nice, p. 450. (1995).

Bandettini, et al., The functional dynamics of blood oxygenation level contrast in the motor cortex, 12'th Proc. Soc. Magn. Reson. Med., New York, p. 1382. (1993).

0 sec2 sec4 sec

Human Brain Mapping 5:329–340(1997)

Selective Averaging of Rapidly Presented Individual Trials Using fMRI

Anders M. Dale* and Randy L. Buckner

RAW DATA

ESTIMATED RESPONSES

Neuronal Activation Input Strategies

- 1. Block Design
- 2. Parametric Design
- 3. Frequency Encoding
- 4. Phase Encoding
- 5. Event Related
- 6. Orthogonal Design
- 7. Free Behavior Design

Proc. Natl. Acad. Sci. USA Vol. 93, pp. 2382–2386, March 1996 Neurobiology

Mapping striate and extrastriate visual areas in human cerebral cortex

Edgar A. DeYoe*, George J. Carman[†], Peter Bandettini[‡], Seth Glickman^{*}, Jon Wieser^{*}, Robert Cox[§], David Miller[¶], and Jay Neitz^{*}

Example of a Set of Orthogonal Contrasts for Multiple Regression

Courtney, S. M., L. G. Ungerleider, et al. (1997). "Transient and sustained activity in a distributed neural system for human working memory." <u>Nature</u> 386(6625): 608-11.

Free Behavior Design

Use a continuous measure as a reference function:

Task performance
Skin Conductance
Heart, respiration rate...
Eye position
EEG

The Skin Conductance Response (SCR)

Patterson et al. (submitted)

Brain activity correlated with SCR during "Rest"

Patterson et al. (submitted)

Resting Hemodynamic Autocorrelations

B. Biswal et al., MRM, 34:537 (1995)

Refinements

BOLD Contrast Interpretation

Dynamics, Paradigm Design and Processing

Applications

Technology MRI	1.5T,3T, 4T Diff. tensor Mg+ 7T EPI on Clin. Syst. Real time fMRI Venography EPI Nav. pulses Quant. ASL SENSE Local Human Head Gradient Coils Quant. ASL Z-shim Baseline Susceptibility ASL Spiral EPI Dynamic IV volume Current Imaging?
Methodology Baseline V IVIM	Correlation Analysis CO2 Calibration Motion Correction Multi-Modal Mapping Parametric Design Multi-Modal Mapping Surface Mapping Free-behavior Designs Phase Mapping Mental Chronometry Linear Regression Deconvolution
Interpretation Blood T2 Hemoglobin	BOLD modelsPET correlationBold dep.IV vs EVASL vs. BOLDBold dep.Pre-undershootPSF of BOLDTE depResolution Dep. Post-undershootExtended Stim. LinearityPost-undershootLinearityMetab. CorrelationSE vs. GECO2 effectNIRS CorrelationNIRS CorrelationFluctuationsOptical Im. CorrelationVeinsInflowBalloon ModelElectrophys. correlation
Applications	Complex motor Language Memory Emotion Motor learning Children Tumor vasc. Drug effects BOLD -V1, M1, A1 Presurgical Attention Ocular Dominance Volume - Stroke V1, V2mapping Priming/Learning Clinical Populations △ Volume-V1 Plasticity Face recognition
36 82 88	89 90 91 92 93 94 95 96 97 98 99 00 01 02

Building Memories: Remembering and Forgetting of Verbal Experiences as Predicted by Brain Activity

Anthony D. Wagner,* Daniel L. Schacter, Michael Rotte,† Wilma Koutstaal, Anat Maril, Anders M. Dale, Bruce R. Rosen, Randy L. Buckner

Making Memories: Brain Activity that Predicts How Well Visual Experience Will Be Remembered

James B. Brewer,* Zuo Zhao, John E. Desmond, Gary H. Glover, John D. E. Gabrieli

Science, Vol 281, August 1998

Past

Present

Future

Technology MRI	1.5T,3T, 4T Diff. tensor Mg+ 7T EPI on Clin. Syst. Real time fMRI Venography EPI Nav. pulses Quant. ASL SENSE Local Human Head Gradient Coils Quant. ASL Z-shim Baseline Susceptibility ASL Spiral EPI Dynamic IV volume Simultaneous ASL and BOLD Current Imaging?
Methodology Baseline V IVIM	Correlation Analysis CO ₂ Calibration Motion Correction Parametric Design Multi-Modal Mapping Surface Mapping Free-behavior Designs Phase Mapping Linear Regression Event-related Deconvolution
Interpretation Blood T2 Hemoglobin	BOLD models PET correlation Bo dep. IV vs EV Bo dep. Pre-undershoot Pre-undershoot PSF of BOLD TE dep Resolution Dep. Post-undershoot Extended Stim. Post-undershoot Linearity SE vs. GE CO2 effect NIRS Correlation Fluctuations Veins Inflow
Applications	Complex motor Language Imagery Memory Emotion Motor learning Children Tumor vasc. Drug effects BOLD -V1, M1, A1 Presurgical Attention Ocular Dominance Volume - Stroke V1, V2mapping Priming/Learning Clinical Populations ∆ Volume-V1 Plasticity Face recognition
	89 90 91 92 93 94 95 96 97 98 99 00 01 02

Logothetis et al. (2001) "Neurophysiological investigation of the basis of the fMRI signal" Nature, 412, 150-157

S. M. Rao et al, (1996) "Relationship between finger movement rate and functional magnetic resonance signal change in human primary motor cortex." *J. Cereb. Blood Flow and Met.* 16, 1250-1254.

R. M. Birn, Z. Saad, P. A. Bandettini, (2001) "Spatial heterogeneity of the nonlinear dynamics in the fMRI BOLD response." *NeuroImage*, 14: 817-826.

Spatial Heterogeneity of BOLD Nonlinearity

R. M. Birn, Z. Saad, P. A. Bandettini, (2001) "Spatial heterogeneity of the nonlinear dynamics in the fMRI BOLD response." *NeuroImage*, 14: 817-826.

Sources of this Nonlinearity

Neuronal

- Hemodynamic
 - Oxygen extraction
 Blood volume dynamics

BOLD Correlation with Neuronal Activity

Logothetis et al. (2001) "Neurophysiological investigation of the basis of the fMRI signal" Nature, 412, 150-157.

BOLD Signal: ePts Change (SD Units) 9.00 BOLD LFP 6.00 6.00 MUA SDF 3.00 3.00 to gnal **BOLD Si** -3.00 20 25 30 35 10 15 40 **Time in Seconds**

P. A. Bandettini and L. G. Ungerleider, (2001) "From neuron to BOLD: new connections." Nature Neuroscience, 4: 864-866.

An approach to probe some neural systems interaction by functional MRI at neural time scale down to milliseconds

Seiji Ogawa^{†‡}, Tso-Ming Lee[†], Ray Stepnoski[†], Wei Chen[§], Xiao-Hong Zhu[§], and Kamil Ugurbil[§]

11026–11031 PNAS September 26, 2000 vol. 97 no. 20

Proc. Natl. Acad. Sci. USA Vol. 93, pp. 14878–14883, December 1996 Neurobiology

Detection of cortical activation during averaged single trials of a cognitive task using functional magnetic resonance imaging

(neuroimaging/single trial/language/prefrontal)

RANDY L. BUCKNER^{†‡§¶}, PETER A. BANDETTINI^{†‡}, KATHLEEN M. O'CRAVEN[†]||, ROBERT L. SAVOY[†]||, STEVEN E. PETERSEN^{**††}, MARCUS E. RAICHLE^{§**††}, AND BRUCE R. ROSEN^{†‡}

Latency

Magnitude

Venograms (3T)

Hemi-Field Experiment

Calibration Techniques.....

Proc. Natl. Acad. Sci. USA Vol. 96, pp. 9403–9408, August 1999 Neurobiology

Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex

RICHARD D. HOGE*[†], JEFF ATKINSON*, BRAD GILL*, GÉRARD R. CRELIER*, SEAN MARRETT[‡], AND G. BRUCE PIKE*

*Room WB325, McConnell Brain Imaging Centre, Montreal Neurological Institute, Quebec, Canada H3A 2B4; and ‡Nuclear Magnetic Resonance Center, Massachusetts General Hospital, Building 149, 13th Street, Charlestown, MA 02129

CBF

BOLD

N=12

Simultaneous Perfusion and BOLD imaging during graded visual activation and hypercapnia

Computed CMRO₂ Changes

Subject 1

Subject 2

Quantitative measurements of cerebral metabolic rate of oxygen utilization using MRI: a volunteer study

Hongyu An,¹ Weili Lin,²* Azim Celik³ and Yueh Z. Lee²

Ocular Dominance Column Mapping using fMRI

Menon, R. S., S. Ogawa, et al. (1997). "Ocular dominance in human V1 demonstrated by functional magnetic resonance imaging." <u>J Neurophysiol</u> 77(5): 2780-7.

Optical Imaging

R. D. Frostig et. al, PNAS 87: 6082-6086, (1990).

Past

Present

Future
Future

Imaging Methods

Implementation

 Shimming Acoustic Noise Multishot Techniques Increased Gradient Performance Higher Field Strengths Surface Coil Arrays Calibration / Quantification Embedded Functional Contrast Noise / Fluctuations Direct Neuronal Current Imaging Clinical Populations Neuronal, Vascular, and Metabolic Information

3D z-Shim Method for Reduction of Susceptibility Effects in BOLD fMRI

Gary H. Glover*

2 G/cm, 350 T/m/s

4 G/cm, 150 T/m/s

J. Bodurka, P. A. Bandettini. Toward direct mapping of neuronal activity: MRI detection of ultra weak transient magnetic field changes, Magn. Reson. Med. (in press).

Functional Imaging Methods / 3T Group

Director: Peter Bandettini **Staff Scientists:** Sean Marrett Jerzy Bodurka Frank Ye Wen-Ming Luh **Post Docs:** Rasmus Birn Hauke Heekeren David Knight Patrick Bellgowan Ziad Saad

Graduate Student: Natalia Petridou Summer Students: Dan Kelley Hannah Chang **Program Assistant:** Kay Kuhns Scanning Technologists: Karen Bove-Bettis Paula Rowser