Starting up a Functional MRI Center

Peter A. Bandettini, Ph.D

Unit on Functional Imaging Methods & 3T Neuroimaging Core Facility

Laboratory of Brain and Cognition National Institute of Mental Health

Interpretation Applications

Interpretation

Applications

Technology MRI	1.5T,3T, 4T Diff. tensor Mg+ 7T EPI on Clin. Syst. Real time fMRI Venography Local Human Head Gradient Coils Nav. pulses Quant. ASL Z-shim Baseline Susceptibility ASL Spiral EPI Multi-shot fMRI Simultaneous ASL and BOLD Current Imaging?
Methodology Baseline V IVIM	Correlation Analysis CO ₂ Calibration Motion Correction Parametric Design Multi-Modal Mapping Surface Mapping Free-behavior Designs Phase Mapping Linear Regression Mental Chronometry Event-related Deconvolution
Interpretation Blood T2 Hemoglobin	BOLD modelsPET correlationBo dep.IV vs EVASL vs. BOLDBo dep.Pre-undershootPSF of BOLDTE depResolution Dep. Post-undershootExtended Stim. LinearityPost-undershootLinearityMetab. CorrelationSE vs. GECO2 effectNIRS CorrelationVeinsInflowBalloon ModelElectrophys. correlation
Applications	Complex motor LanguageMemoryEmotionMotor learningChildrenTumor vasc.Drug effectsBOLD -V1, M1, A1PresurgicalAttentionOcular DominanceVolume - StrokeV1, V2mappingPriming/LearningClinical Populations Δ Volume-V1PlasticityFace recognition
36 82 88	89 90 91 92 93 94 95 96 97 98 99 00 01 02

1. Purchasing a scanner

- 2. Data handling
- 3. Subject interface devices
- 4. Data processing
- 5. Personnel

- 1. Purchasing a scanner
- 2. Data handling
- 3. Subject interface devices
- 4. Data processing
- 5. Personnel

Purchasing a scanner

-field strength -manufacturer -service -rf receivers (number and bandwidth -field homogeneity -stability -shimming -gradient homogeneity -gradient performance -programming environment -real time? -service contract -other centers with the scanner

General Electric 3 Tesla Scanner

What Changes with Field Strength?

Tissue Relaxation Characteristics Functional Contrast Signal to Noise Ratio Bo Inhomogeneity Effects

RF Power Deposition Mechanical Force on Gradient Coil

T1 Values Across Field Strengths

T2 Values Across Field Strengths

Whole Brain Anatomy **FLAIR**

T1-SE

T2-FSE

1.5T

UIC

UIC

3.0T: 3D TOF MRA

Longer T1 at 3.0T enhances flow effects and improves background suppression as well as allows higher spatial resolution

15 y.o. female patient

57 y.o. male patient

T2* Values Across Field Strengths

Venograms (3T)

Neuroimaging at 1.5 T and 3.0 T: Comparison of Oxygenation-Sensitive Magnetic Resonance Imaging

Gunnar Krüger,* Andreas Kastrup, and Gary H. Glover

Gradient-Echo EPI

Spin-Echo EPI

Gradient - Echo

Asymmetric Spin - Echo

Gradient - Echo

Asymmetric Spin - Echo

Gradient - Echo

Asymmetric Spin - Echo

Neuroimaging at 1.5 T and 3.0 T: Comparison of Oxygenation-Sensitive Magnetic Resonance Imaging

Gunnar Krüger,* Andreas Kastrup, and Gary H. Glover

Neuroimaging at 1.5 T and 3.0 T: Comparison of Oxygenation-Sensitive Magnetic Resonance Imaging

Gunnar Krüger,* Andreas Kastrup, and Gary H. Glover

Functional Contrast at Optimal TE

Contrast depends on: activation-induced changes in T2* and resting T2*

Functional Contrast at Optimal TE

Neuroimaging at 1.5 T and 3.0 T: Comparison of Oxygenation-Sensitive Magnetic Resonance Imaging

Gunnar Krüger,* Andreas Kastrup, and Gary H. Glover

Contrast depends on: activation-induced changes in T2* and resting T2*

Gradient echo Signal Loss

3D z-Shim Method for Reduction of Susceptibility Effects in BOLD fMRI

Gary H. Glover*

A Bit of a Mouth Full: Susceptibility Artifact Reduction Using Diamagnetic Passive Shims

J. L. Wilson, M. Jenkinson, and P. Jezzard

Centre for Functional Magnetic Resonance Imaging of the Brain, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, U.K.

Figure 1: Brain masked axial B0 maps of the IFC are shown (a) without, and (b) with the mouth shim; range: -0.8 ppm (light) to +0.8 ppm (dark). Corresponding GE EPIs are shown (c) without, and (d) with the mouth shim. White arrows indicate a region of susceptibility artifact reduction. 205

A few slides about Image Resolution and Noise...

Multishot Imaging

Multi Shot EPI

Partial k-space imaging

Partial k-space imaging

Fractional Signal Change

Jesmanowicz, P. A. Bandettini, J. S. Hyde, (1998) "Single shot half k-space high resolution EPI for fMRI at 3T." *Magn. Reson. Med.* 40, 754-762.

Temporal vs. Spatial SNR-3T

0.25 Hz Breathing at 3T

0.68 Hz Cardiac rate at 3T

Temporal S/N vs. Image S/N

N. Petridou

Neuroimaging at 1.5 T and 3.0 T: Comparison of Oxygenation-Sensitive Magnetic Resonance Imaging

Gunnar Krüger,* Andreas Kastrup, and Gary H. Glover

Temporal vs. Image S/N Optimal Resolution Study

Human data

Petridou et al

Temporal vs. Image S/N Optimal Resolution Study

Phantom data

Petridou et al

Resolution, Speed, Surface Coils, Field Strength, etc..

Ocular Dominance Column Mapping using fMRI

Menon, R. S., S. Ogawa, et al. (1997). "Ocular dominance in human V1 demonstrated by functional magnetic resonance imaging." <u>J Neurophysiol</u> 77(5): 2780-7.

Optical Imaging

R. D. Frostig et. al, PNAS 87: 6082-6086, (1990).

Imaging System Components

1. Purchasing a scanner

- 2. Data handling
- 3. Subject interface devices
- 4. Data processing
- 5. Personnel

Data handling

-real time
-pseudo real time
-RAID servers
-reconstruction speed
-reconstruction access

AThe Linux based stimulus delivery system.

AThe real-time recording and display with AFNI. delivery system.

Processing Stream with Real Time fMRI

End of Acquisition

< 1 s to render

Blocked trials: 20 s on/20 s off 8 blocks

Blocks: <u>12345678</u>

Color shows through brain

Correlation > 0.45

1. Purchasing a scanner

- 2. Data handling
- 3. Subject interface devices
- 4. Data processing
- 5. Personnel

Subject interface devices

-stimulus devices

 >projector, goggles, tactile, smell, sound
 -synchronization
 -subject feedback
 >button box, SCR, cardiac, respiratory, eye tracking
 -subject stability
 >cushions, bite bar

1. Purchasing a scanner

- 2. Data handling
- 3. Subject interface devices
- 4. Data processing
- 5. Personnel

Data processing

-preprocessing (recon)
-post processing (registration, statistical tests)
-post post processing (subject averaging, display)

1. Purchasing a scanner

- 2. Data handling
- 3. Subject interface devices
- 4. Data processing
- 5. Personnel

Personnel

-physicist -engineer -computer person (processing and stimulus program) -stimulus/feedback device specialist -rf coil person -scanner technologist -administrator

FIM Unit & FMRI Core Facility

Director: Peter Bandettini **Staff Scientists:** Sean Marrett Jerzy Bodurka Frank Ye Wen-Ming Luh Computer Specialist: Adam Thomas **Post Docs:** Rasmus Birn Hauke Heekeren David Knight Patrick Bellgowan Ziad Saad

Graduate Student: Summer Students: Natalia Petridou Hannah Chang Post-Back. IRTA Students: Courtney Kemps **Douglass Ruff** Elisa Kapler August Tuan Carla Wettig Kang-Xing Jin Dan Kelley Visiting Fellows: **Program Assistant:** Sergio Casciaro Kay Kuhns Marta Maieron Scanning Technologists: **Guosheng Ding** Karen Bove-Bettis **Clinical Fellow:** Paula Rowser James Patterson **Psychologist:** Julie Frost

 Shimming Acoustic Noise Multishot Techniques Increased Gradient Performance Higher Field Strengths Surface Coil Arrays Calibration / Quantification Embedded Functional Contrast Noise / Fluctuations Direct Neuronal Current Imaging Clinical Populations Neuronal, Vascular, and Metabolic Information

2 G/cm, 350 T/m/s

4 G/cm, 150 T/m/s

Diffusion imaging Faster imaging Higher resolution