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Alternating Left and Right Finger Tapping 

~ 1992
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BOLD Contrast:
A Few Strategies for Better Interpretation 

• Pulse sequence modulation
• Neuronal activation modulation
• Alternative measurement comparison



BOLDPerfusion
No

Velocity
Nulling

Velocity
Nulling

ASL

GE

SETI
(IV) (IV)

Time
(sec)

1 2 40 3
Venous inflow

(for ASL, w/ no VN)
Arterial inflow

(BOLD TR < 500 ms)

Pulse Sequence
Sensitivity

Spatial
Heterogeneity



Hemodynamics Neuronal Currents
-quick overview

-linearity (steady state)

-linearity (dynamic)

-baseline signal

-latency

-width

-model

-approaches
current phantom
cell cultures
human studies

-why there is hope



Logothetis et al. (2001) “Neurophysiological 
investigation of the basis of the fMRI 
signal” Nature, 412, 150-157

S. M. Rao et al, (1996) “Relationship between finger 
movement rate and functional magnetic resonance 
signal change in human primary motor cortex.” J. 
Cereb. Blood Flow and Met. 16, 1250-1254.
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R. L. Savoy, et al., Pushing the temporal resolution of fMRI: studies of very brief visual stimuli, onset 
variability and asynchrony, and stimulus-correlated changes in noise [oral], 3'rd Proc. Soc. Magn. 
Reson., Nice, p. 450. (1995). 
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12'th Proc. Soc. Magn. Reson. Med., New York, p. 1382. (1993). 





Different stimulus “ON” periods
measured

linear
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BOLD 
Response

Brief stimuli produce larger responses than expected

Dynamic Nonlinearity Assessment

R. M. Birn, Z. Saad, P. A. Bandettini, (2001) “Spatial heterogeneity of the nonlinear dynamics in the 
fMRI BOLD response.” NeuroImage, 14: 817-826.
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R. M. Birn, Z. Saad, P. A. Bandettini, (2001) “Spatial heterogeneity of the nonlinear dynamics in the 
fMRI BOLD response.” NeuroImage, 14: 817-826.

Spatial Heterogeneity of BOLD Nonlinearity



Results – visual task

Nonlinearity

Magnitude

Latency

R. M. Birn, Z. Saad, P. A. Bandettini, (2001) “Spatial heterogeneity of the nonlinear dynamics in the 
fMRI BOLD response.” NeuroImage, 14: 817-826.



Sources of this Nonlinearity

• Neuronal

• Hemodynamic

– Oxygen extraction
– Blood volume 

dynamics

D Volume

Flow In Flow Out

Oxygen Extraction



BOLD Correlation with Neuronal Activity

Logothetis et al. (2001) 
“Neurophysiological investigation 
of the basis of the fMRI signal” 
Nature, 412, 150-157.

P. A. Bandettini and L. G. 
Ungerleider, (2001) “From neuron 
to BOLD: new connections.” 
Nature Neuroscience, 4:  864-866.
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Results – constant gratings
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Varying “ON” and “OFF” periods

• Rapid event-related design with varying ISI
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Varying “ON” and “OFF” periods
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Ziad Saad, Z. S. Saad, K. M. Ropella, E. A. DeYoe, P. A. Bandettini, 
The spatial extent of the BOLD response.  NeuroImage, (in press). 
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Amygdala

Sympathetic Nervous System

The Skin Conductance Response (SCR)

Ventromedial PFC

Hypothalamus

Resistance change across 
two electrodes induced 
by changes in sweating.

Sweat Gland

Orbitofrontal Cortex

J. C. Patterson II, L. G. Ungerleider, and P. A Bandettini, Task - independent functional brain activity 
correlation with skin conductance changes: an fMRI study. NeuroImage 17:1787-1806, (2002).



Brain activity correlated with SCR during “Rest”

J. C. Patterson II, L. G. Ungerleider, and P. A Bandettini, Task - independent functional brain activity 
correlation with skin conductance changes: an fMRI study. NeuroImage 17:1787-1806, (2002).
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Venograms (3T)
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Optimal Detection of Hemodynamic Latency
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Bottleneck
In Processing
(upstream)

Delayed
Processing

(downstream)

Hemodynamic Response Modulation



P.S.F. Bellgowan, Z. S. Saad, P. A. Bandettini, Understanding neural 
system dynamics through task modulation and measurement of BOLD 
amplitude, latency, and width. Proc. Nat'l. Acad. Sci. USA  (in press). 

Our first attempt to apply this strategy..



Use of Task Timing Modulation to Extract Processing Streams  

Stimuli – Six-letter English words and pronounceable non-words.
    Each word or non-word was rotated either 0, 60,or 120 degrees
Task – Lexical Decision (word / non-word).
Dependent Measures – Percent Correct and Reaction Time.

Hypotheses :
 1) Stimulus rotation of 120 degrees will result in:
  a) Longer Reaction Times 
  b) Stimulus rotation demands a change in perceptual 
  perspective prior to linguistic processing, resulting in a 
  delayed IRF onset in areas involved in Lexical and Pre-Lexical 
  processing.

  2) Lexical discrimination will result in :
  a) Longer Reaction Times for non-words due to 
  increased Pre-Lexical processing demands.
  b) Wider IRF in Inferior Frontal cortex for non-words
  c) Delayed IRF onset in Left Middle Frontal Cortex
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Word vs. Non-word 0o, 60o, 120o Rotation
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Estimation of Delay, Width & 
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Lexical effect maps
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Toward direct mapping of neuronal activity:
 MRI detection of ultra weak and transient 

magnetic field changes. 

Jerzy Bodurka

Natalia Petridou

Peter A. Bandettini



•Neuronal activity is directly associated with ionic 
currents. 

•These bio-currents induce spatially distributed and 
transient magnetic flux density (Bc) changes and 
magnetic field gradients (dBc/dr).

•In the context of MRI, these currents therefore alter 
the magnetic phase (Df) of surrounding water 
protons. 

Introduction
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J.P. Wikswo Jr et al.  J Clin Neuronphy 8(2): 170-188, 1991



Schematic representation of (a) a postsynaptic potential and (b) an 
action potential as a function of time.

The post synaptic potential lasts for 10ms or more, 
allowing integration of individual fields to create

MEG detectable > 100 fT field on surface of skull  

Synchronous activity among large neuronal populations produce 
small transient magnetic field changes which are typically 
detected on the scalp with Magnetoencephalography (MEG).
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Derivation of B field generated in an MRI 

voxel by a current dipole
Single dendritic tree having a diameter d, and length L behaves like a conductor with 
conductivity s. Resistance is R=V/I, where R=4L/(pd2 s). From Biot-Savart:
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Q
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by substituting d = 4µm, s » 0.25 W-1 m-1, V = 10mV and 

r = 4cm ( measurement distance when using MEG) the resulting value is:  B»0.002 fT 

Because BMEG=100fT (or more) is measured by MEG on the scalp, a large number of 
neurons, (0.002 fT x 50,000 = 100 fT), must coherently act to generate such field. These 
bundles of neurons produce, within a typical voxel, 1 mm x 1 mm x 1 mm, a field of order:
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Can MRI Detect transient B0 changes

On the order of 0.2 nT?



•Neuronal activity is directly associated with ionic 
currents. 

•These bio-currents induce spatially distributed and 
transient magnetic flux density (Bc) changes and 
magnetic field gradients (dBc/dr).

•In the context of MRI, these currents therefore alter 
the magnetic phase (Df) of surrounding water 
protons. 

Introduction

Frequency shift associated with 0.2 nT field shift = 0.01 Hz.
At TE = 30 ms, Df = 0.09 deg.
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calculated Bc || B0

B0 B0

calculated |DBc|  || B0

Measurement

Correlation image Spectral image

Simulation

Single shot GE EPI

Df
70 µA current

@ 200



D B = Df / (g  TE) 

SD of phase noise 
was sf=0.016 rad 
DBf = 2.2 nT
Sensitivity:
 D B = (1.7 ± 0.3) nT

X

Y
Z

B0 || Z

X

Z

time ( s )100 s

10 µA current
Df (t)

Single shot GE EPI, 
TR=54ms, TE=27ms, 
FOV=12cm, 64x64



Figure 1
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J. Bodurka, P. A. Bandettini. Toward direct mapping of neuronal activity: MRI detection 
of ultra weak transient magnetic field changes, Magn. Reson. Med. 47: 1052-1058, (2002). 



While many unknowns about neuronal-induced current 
magnitudes and spatial scales remain, the combination
of a SE EPI sequence with precisely synchronized
stimulation protocol optimizes the ability to detect small
and transient magnetic field changes. 

Transient or periodic flux density changes as small as 
200 pT can be detected using MRI.

Conclusions of phantom studies:



Optimization of Phase Detection

1. Increase image S/N
2. Reduce Temporal Phase Noise
3. Selectively tune sequence to frequency
 of NMR phase change



- Respiration (chest wall movement)

- cardiac pulsation 

- eye movement

-system instabilities (including eddy currents)

Sources of Phase Noise
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Experiment (human respiration)
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Spin-echo sequence advantages: 
SE sequence improve sensitivity to small and transient  DB(t) 
changes and simultaneously reduces unwanted low-
frequency field shift. 

TR

Slice selection Spatial encoding

TE

Scaner
SE:

900 1800
tauEMF

Stimulus 
onset: delay DBEMF(t)



P1 (70ms)

200fT

»20ms

S1: Optimal temporal position for 180 pulse;
       net phase shift induce by EMF>0

S1 S2

S1: For this 180 pulse temporal position net 
      phase shift induce by EMF is close to zero  

DBEMF(t)



detection of neuronal currents in vitro

Tissue Cultures 

•  Coronal sections of newborn-
    rat brains (in-plane:0.3-1mm2 
    thickness:~60µm) 

Cx

CPu

GPe

STN

25 mV
10 s

physiological model

D. Plenz NNP, NIMH, NIH



detection of neuronal currents in vitro

methods

Setup
•  10cm diameter CSF-filled glass container
•  3T GE scanner (Milwaukee, WI)
•  10’’ surface coil (Nova Medical Inc)

Imaging

•  FSE structural images (256x256)

•  SE EPI single shot, TE: 60ms, TR:1s, flip angle: 900,  

   FOV: 18cm, 64x64, 4 slices (3mm). Images: 1200 (20 min)
Ø Active:    10 min activity
Ø Inactive: 10 min after TTX administration



results

A: activity, on-off frequency (appx. 7 sec)
B: activity
C: scanner noise (cooling-pump)

Active state: black line, Inactive state: red line

A

B

C A

B

C

1: culture 2: CSF

FSE image

1 2

Hz Hz

CSF

detection of neuronal currents in vitro

Culture



Preliminary Human Studies
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J.P. Wikswo Jr et al.  J Clin Neuronphy 8(2): 170-188, 1991



Schematic representation of (a) a postsynaptic potential and (b) an 
action potential as a function of time.

The post synaptic potential lasts for 10ms or more, 
allowing integration of individual fields to create

MEG detectable > 100 fT field on surface of skull  
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