Limits of BOLD and Beyond: Hemodynamics to Neuronal Currents

Peter A. Bandettini, Ph.D

Unit on Functional Imaging Methods Laboratory of Brain and Cognition, NIMH & Functional MRI Facility National Institutes of Health

FIM Unit & FMRI Core Facility

Director: Peter Bandettini **Staff Scientists:** Sean Marrett Jerzy Bodurka Frank Ye Wen-Ming Luh Computer Specialist: Adam Thomas **Post Docs:** Rasmus Birn Hauke Heekeren David Knight Patrick Bellgowan Ziad Saad

Graduate Student: Summer Students: Natalia Petridou Post-Back. IRTA Students: Courtney Kemps Elisa Kapler August Tuan Dan Kelley Visiting Fellows: Sergio Casciaro Marta Maieron **Guosheng Ding Clinical Fellow:** James Patterson **Psychologist:** Julie Frost

Hannah Chang **Douglass Ruff** Carla Wettig Kang-Xing Jin **Program Assistant:** Kay Kuhns Scanning Technologists: Karen Bove-Bettis Paula Rowser

The people who did all the work...

Rasmus Birn Ziad Saad Patrick Bellgowan

Natalia Petridou

-quick overview

-linearity (steady state)

-linearity (dynamic)

-baseline signal

-latency

-width

Neuronal Currents

-model

-approaches current phantom cell cultures human studies

- -quick overview
- -linearity (steady state)
- -linearity (dynamic)
- -baseline signal
- -latency
- -width

Neuronal Currents

-model

-approaches current phantom cell cultures human studies

Alternating Left and Right Finger Tapping

~ 1992

BOLD Contrast: A Few Strategies for Better Interpretation

- Pulse sequence modulation
- Neuronal activation modulation
- Alternative measurement comparison

-quick overview

-linearity (steady state)

-linearity (dynamic)

-baseline signal

-latency

-width

Neuronal Currents

-model

-approaches current phantom cell cultures human studies

S. M. Rao et al, (1996) "Relationship between finger movement rate and functional magnetic resonance signal change in human primary motor cortex." *J. Cereb. Blood Flow and Met.* 16, 1250-1254. Logothetis et al. (2001) "Neurophysiological investigation of the basis of the fMRI signal" Nature, 412, 150-157

-quick overview

-linearity (steady state)

-linearity (dynamic)

-baseline signal

-latency

-width

Neuronal Currents

-model

-approaches current phantom cell cultures human studies

R. L. Savoy, et al., Pushing the temporal resolution of fMRI: studies of very brief visual stimuli, onset variability and asynchrony, and stimulus-correlated changes in noise [oral], 3'rd Proc. Soc. Magn. Reson., Nice, p. 450. (1995).

Bandettini, et al., The functional dynamics of blood oxygenation level contrast in the motor cortex, 12'th Proc. Soc. Magn. Reson. Med., New York, p. 1382. (1993).

0 sec2 sec4 sec

Individual Trials Using fMRI

Anders M. Dale* and Randy L. Buckner

RAW DATA

ESTIMATED RESPONSES

Human Brain Mapping 5:329–340(1997)

R. M. Birn, Z. Saad, P. A. Bandettini, (2001) "Spatial heterogeneity of the nonlinear dynamics in the fMRI BOLD response." *NeuroImage*, 14: 817-826.

Spatial Heterogeneity of BOLD Nonlinearity

R. M. Birn, Z. Saad, P. A. Bandettini, (2001) "Spatial heterogeneity of the nonlinear dynamics in the fMRI BOLD response." *NeuroImage*, 14: 817-826.

Results – visual task

R. M. Birn, Z. Saad, P. A. Bandettini, (2001) "Spatial heterogeneity of the nonlinear dynamics in the fMRI BOLD response." *NeuroImage*, 14: 817-826.

Sources of this Nonlinearity

Neuronal

- Hemodynamic
 - Oxygen extraction
 Blood volume dynamics

BOLD Correlation with Neuronal Activity

Logothetis et al. (2001) "Neurophysiological investigation of the basis of the fMRI signal" Nature, 412, 150-157.

BOLD Signal: ePts Change (SD Units) 9.00 BOLD LFP 6.00 6.00 MUA SDF 3.00 3.00 to gnal **BOLD Si** -3.00 20 25 30 35 10 15 40 **Time in Seconds**

P. A. Bandettini and L. G. Ungerleider, (2001) "From neuron to BOLD: new connections." Nature Neuroscience, 4: 864-866.

Results – constant gratings

Varying "ON" and "OFF" periods

Rapid event-related design with varying ISI

MM_MM_M_M_M_M_M_M_M_M_25% ON

MWWM_WWM_MWM_MWM_MWM_MM_50% ON

75% ON

Varying "ON" and "OFF" periods

-quick overview

-linearity (steady state)

-linearity (dynamic)

-baseline signal

-latency

-width

Neuronal Currents

-model

-approaches current phantom cell cultures human studies

Continuously Growing Activation Area

CC Histogram

Inflection Point

Ziad Saad, Z. S. Saad, K. M. Ropella, E. A. DeYoe, P. A. Bandettini, The spatial extent of the BOLD response. *NeuroImage*, (*in press*).

The Skin Conductance Response (SCR)

J. C. Patterson II, L. G. Ungerleider, and P. A Bandettini, Task - independent functional brain activity correlation with skin conductance changes: an fMRI study. *NeuroImage* 17:1787-1806, (2002).

Brain activity correlated with SCR during "Rest"

J. C. Patterson II, L. G. Ungerleider, and P. A Bandettini, Task - independent functional brain activity correlation with skin conductance changes: an fMRI study. *NeuroImage* 17:1787-1806, (2002).

-quick overview

-linearity (steady state)

-linearity (dynamic)

-baseline signal

-latency

-width

Neuronal Currents

-model

-approaches current phantom cell cultures human studies

Proc. Natl. Acad. Sci. USA Vol. 93, pp. 14878–14883, December 1996 Neurobiology

Detection of cortical activation during averaged single trials of a cognitive task using functional magnetic resonance imaging

(neuroimaging/single trial/language/prefrontal)

RANDY L. BUCKNER^{†‡§¶}, PETER A. BANDETTINI^{†‡}, KATHLEEN M. O'CRAVEN[†]||, ROBERT L. SAVOY[†]||, STEVEN E. PETERSEN^{**††}, MARCUS E. RAICHLE^{§**††}, AND BRUCE R. ROSEN^{†‡}

Latency

Magnitude

Venograms (3T)

Hemi-Field Experiment

Smallest latency Variation Detectable (ms) (p < 0.001)

Number of runs

Optimal Detection of Hemodynamic Latency

Hemodynamics

-quick overview

-linearity (steady state)

-linearity (dynamic)

-baseline signal

-latency

-width

Neuronal Currents

-model

-approaches current phantom cell cultures human studies

-why there is hope

Hemodynamic Response Modulation

Our first attempt to apply this strategy..

P.S.F. Bellgowan, Z. S. Saad, P. A. Bandettini, Understanding neural system dynamics through task modulation and measurement of BOLD amplitude, latency, and width. *Proc. Nat'l. Acad. Sci. USA (in press).*

Use of Task Timing Modulation to Extract Processing Streams

Stimuli – Six-letter English words and pronounceable non-words. Each word or non-word was rotated either 0, 60,or 120 degrees

Task – Lexical Decision (word / non-word).

Dependent Measures – Percent Correct and Reaction Time.

Hypotheses :

1) Stimulus rotation of 120 degrees will result in:

a) Longer Reaction Times

b) Stimulus rotation demands a change in perceptual perspective prior to linguistic processing, resulting in a delayed IRF onset in areas involved in Lexical and Pre-Lexical processing.

2) Lexical discrimination will result in :

a) Longer Reaction Times for non-words due to increased Pre-Lexical processing demands.b) Wider IRF in Inferior Frontal cortex for non-wordsc) Delayed IRF onset in Left Middle Frontal Cortex

Word vs. Non-word 0°, 60°, 120° Rotation

Estimation of Delay, Width & Amplitude

Lexical effect maps

Warm colors are areas where Words > Non-words. Cool colors (blues) are areas Where Non-words > words. The Left hemisphere is toward the left margin. The green arrows highlight the inferior frontal gyrus.

Rotational effect maps

Non-rotated vs. 60° rotated

Non-rotated vs. 120° rotated

Distribution of Delay Estimates for Subject BP

Delay Maps

Delay Difference Map

Not Rotated

Rotated 120°

Width Maps

Width Difference Map

Hemodynamics

-quick overview

-linearity (steady state)

-linearity (dynamic)

-baseline signal

-latency

-width

Neuronal Currents

-model

-approaches current phantom cell cultures human studies

-why there is hope

Toward direct mapping of neuronal activity: MRI detection of ultra weak and transient magnetic field changes.

Jerzy Bodurka Natalia Petridou Peter A. Bandettini

Introduction

•Neuronal activity is directly associated with ionic currents.

•These bio-currents induce **spatially distributed and transient** magnetic flux density (B_c) changes and magnetic field gradients (dB_c/dr).

•In the context of MRI, these currents therefore alter **the magnetic phase** ($\Delta \phi$) of surrounding water protons.

Introduction

•Neuronal activity is directly associated with ionic currents.

•These bio-currents induce **spatially distributed and transient** magnetic flux density (B_c) changes and magnetic field gradients (dB_c/dr).

•In the context of MRI, these currents therefore alter **the magnetic phase** ($\Delta \phi$) of surrounding water protons.

J.P. Wikswo Jr et al. J Clin Neuronphy 8(2): 170-188, 1991

Synchronous activity among large neuronal populations produce **small transient** magnetic field changes which are typically detected on the scalp with Magnetoencephalography (MEG).

Schematic representation of (a) a postsynaptic potential and (b) an action potential as a function of time.

The post synaptic potential lasts for 10ms or more, allowing integration of individual fields to create MEG detectable > 100 fT field on surface of skull

Introduction

•Neuronal activity is directly associated with ionic currents.

•These bio-currents induce **spatially distributed and transient** magnetic flux density (B_c) changes and magnetic field gradients (dB_c/dr).

•In the context of MRI, these currents therefore alter **the magnetic phase** ($\Delta \phi$) of surrounding water protons.

Derivation of B field generated in an MRI voxel by a current dipole

Single dendritic tree having a diameter d, and length L behaves like a conductor with conductivity σ . Resistance is R=V/I, where R=4L/($\pi d^2 \sigma$). From Biot-Savart:

$$B = \frac{\mu_0}{4\pi} \frac{Q}{r^2} = \frac{\mu_0}{16} \frac{d^2 \sigma V}{r^2}$$

by substituting d = 4 μ m, $\sigma \approx 0.25 \ \Omega^{-1} \ m^{-1}$, V = 10mV and

r = 4cm (measurement distance when using MEG) the resulting value is: $B \approx 0.002 \text{ fT}$

Because B_{MEG} =100fT (or more) is measured by MEG on the scalp, a large number of neurons, (0.002 fT x 50,000 = 100 fT), must coherently act to generate such field. These bundles of neurons produce, within a typical voxel, 1 mm x 1 mm x 1 mm, a field of order:

$$B_{MRI} = B_{MEG} \left(\frac{r_{MEG}}{r_{MRI}}\right)^2 = B_{MEG} \left(\frac{4 \ cm}{0.1 \ cm}\right)^2 = 1600 \ B_{MEG} \qquad \mathsf{B}_{\mathsf{MRI}} \approx 0.2 \ \mathsf{nT}$$

Can MRI Detect transient B₀ changes On the order of 0.2 nT?

Introduction

•Neuronal activity is directly associated with ionic currents.

•These bio-currents induce **spatially distributed and transient** magnetic flux density (B_c) changes and magnetic field gradients (dB_c/dr).

•In the context of MRI, these currents therefore alter **the magnetic phase** ($\Delta \phi$) of surrounding water protons.

Frequency shift associated with 0.2 nT field shift = 0.01 Hz. At TE = 30 ms, $\Delta \phi$ = 0.09 deg.

Hemodynamics

-quick overview

-linearity (steady state)

-linearity (dynamic)

-baseline signal

-latency

-width

Neuronal Currents

-model

-approaches current phantom cell cultures human studies

-why there is hope

Current Phantom Experiment

Simulation

$\Delta \phi \cong 20^{\circ}$

Correlation image

Measurement

Spectral image

Single shot GE EPI

Single shot GE EPI, TR=54ms, TE=27ms, FOV=12cm, 64x64 $\Delta B = \Delta \phi / (\gamma TE)$

SD of phase noise was $\sigma_{\phi}=0.016$ rad $\Delta B_{\phi}=2.2$ nT Sensitivity:

 $\Delta B = (1.7 \pm 0.3) nT$

J. Bodurka, P. A. Bandettini. Toward direct mapping of neuronal activity: MRI detection of ultra weak transient magnetic field changes, Magn. Reson. Med. 47: 1052-1058, (2002).

Conclusions of phantom studies:

While many unknowns about neuronal-induced current magnitudes and spatial scales remain, the combination of a SE EPI sequence with precisely synchronized stimulation protocol optimizes the ability to detect small and transient magnetic field changes.

Transient or periodic flux density changes as small as 200 pT can be detected using MRI.

Optimization of Phase Detection

- Increase image S/N
 Reduce Temporal Phase Noise
 Selectively tune sequence to frequency
 - of NMR phase change

Sources of Phase Noise

- Respiration (chest wall movement)
- cardiac pulsation
- eye movement
- -system instabilities (including eddy currents)

Experiment (human respiration)

Experiment (human respiration)

TR =1.0 sec

Spin-echo sequence advantages:

S1: Optimal temporal position for 180 pulse; net phase shift induce by EMF>0

S1: For this 180 pulse temporal position net phase shift induce by EMF is close to zero

physiological model

Tissue Cultures

 Coronal sections of newbornrat brains (in-plane:0.3-1mm² thickness:~60µm)

D. Plenz NNP, NIMH, NIH

detection of neuronal currents in vitro

methods

Setup

- 10cm diameter CSF-filled glass container
- **3T GE scanner (Milwaukee, WI)**
- 10" surface coil (Nova Medical Inc)

Imaging

- FSE structural images (256x256)
- SE EPI single shot, TE: 60ms, TR:1s, flip angle: 90⁰,

FOV: 18cm, 64x64, 4 slices (3mm). Images: 1200 (20 min)

- Active: 10 min activity
- Inactive: 10 min after TTX administration

detection of neuronal currents in vitro

- A: activity, on-off frequency (appx. 7 sec)
- B: activity
- C: scanner noise (cooling-pump)

Preliminary Human Studies

Phase v=0.12Hz

Closed

Open

Power spectra

Phase v=0.12Hz

Closed

Open

Closed

Magnitude v=0.12Hz

Open

Hemodynamics

-quick overview

-linearity (steady state)

-linearity (dynamic)

-baseline signal

-latency

-width

Neuronal Currents

-model

-approaches current phantom cell cultures human studies

-why there is hope

J.P. Wikswo Jr et al. J Clin Neuronphy 8(2): 170-188, 1991

Schematic representation of (a) a postsynaptic potential and (b) an action potential as a function of time.

The post synaptic potential lasts for 10ms or more, allowing integration of individual fields to create MEG detectable > 100 fT field on surface of skull

Interpretation Applications

Interpretation

Applications

Technology MRI	Diff. tensor Mg+ 7T >8 channels EPI on Clin. Syst. Real time fMRI Venography EPI Nav. pulses Real time fMRI SENSE Local Human Head Gradient Coils Quant. ASL Z-shim Baseline ASL Spiral EPI Dynamic IV volume Baseline Susceptibility BOLD Multi-shot fMRI Simultaneous ASL and BOLD Current Imaging?
Methodology Baseline V	Correlation Analysis CO2 Calibration Motion Correction Mixed ER and Blocked Parametric Design Multi-Modal Mapping Surface Mapping ICA Free-behavior Designs Phase Mapping Mental Chronometry Linear Regression Multi-variate Mapping Event-related Deconvolution Fuzzy Clustering
Interpretation Blood T2 Hemoglobin	BOLD modelsPET correlationBoundaryBoundaryBoundaryIV vs EVASL vs. BOLDBoundaryPre-undershootPost-undershootParticipationPost-undershootExtended Stim.Post-undershootLinearitySE vs. GECO2 effectNIRS CorrelationFluctuationsOptical Im. CorrelationVeinsInflowBalloon ModelElectrophys. correlation
Applications	Complex motor LanguageMemoryEmotionMotor learningChildrenTumor vasc.Drug effectsBOLD -V1, M1, A1PresurgicalAttentionOcular DominanceVolume - StrokeV1, V2mappingPriming/LearningClinical Populations Δ Volume-V1PlasticityFace recognition
	89 90 91 92 93 94 95 96 97 98 99 00 01 02

FIM Unit & FMRI Core Facility

Director: Peter Bandettini **Staff Scientists:** Sean Marrett Jerzy Bodurka Frank Ye Wen-Ming Luh Computer Specialist: Adam Thomas **Post Docs:** Rasmus Birn Hauke Heekeren David Knight Patrick Bellgowan Ziad Saad

Graduate Student: Summer Students: Natalia Petridou Post-Back. IRTA Students: Courtney Kemps Elisa Kapler August Tuan Dan Kelley Visiting Fellows: Sergio Casciaro Marta Maieron **Guosheng Ding Clinical Fellow:** James Patterson **Psychologist:** Julie Frost

Hannah Chang **Douglass Ruff** Carla Wettig Kang-Xing Jin **Program Assistant:** Kay Kuhns Scanning Technologists: Karen Bove-Bettis Paula Rowser

