Functional MRI

Peter A. Bandettini, Ph.D

Unit on Functional Imaging Methods & 3T Neuroimaging Core Facility

Laboratory of Brain and Cognition National Institute of Mental Health

Alternating Left and Right Finger Tapping

A short background.

L. Pauling, C. D. Coryell, (1936) "The magnetic properties and structure of hemoglobin, oxyhemoglobin, and carbonmonoxyhemoglobin." Proc.Natl. Acad. Sci. USA 22, 210-216.

Thulborn, K. R., J. C. Waterton, et al. (1982). "Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field." Biochim. Biophys. Acta. 714: 265-270.

S. Ogawa, T. M. Lee, A. R. Kay, D. W. Tank, (1990) "Brain magnetic resonance imaging with contrast dependent on blood oxygenation." Proc. Natl. Acad. Sci. USA 87, 9868-9872.

R. Turner, D. LeBihan, C. T. W. Moonen, D. Despres, J. Frank, (1991). Echo-planar time course MRI of cat brain oxygenation changes. Magn. Reson. Med. 27, 159-166.

Functional MRI Methods

Blood Volume Imaging

BOLD Contrast

Arterial Spin Labeling

Blood Volume Imaging

Susceptibility Contrast agent bolus injection and time series collection of T2* or T2 - weighted images

Blood Volume

Photic Stimulation

MRI Image showing activation of the Visual Cortex

From Belliveau, et al. Science Nov 1991

MSC - perfusion

BOLD Contrast in the Detection of Neuronal Activity

Cerebral Tissue Activation

Local Vasodilation

Increase in Cerebral Blood Flow and Volume Oxygen Delivery Exceeds Metabolic Need

Increase in Capillary and Venous Blood Oxygenation

Decrease in Deoxy-hemoglobin

Deoxy-hemoglobin: paramagnetic Oxy-hemoglobin: diamagnetic

Decrease in susceptibility-related intravoxel dephasing

Local Signal Increase in T2 and T2* - weighted sequences

Alternating Left and Right Finger Tapping

K. K. Kwong, et al, (1992) "Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation." Proc. Natl. Acad. Sci. USA. 89, 5675-5679.

S. Ogawa, et al., (1992) "Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc. Natl. Acad. Sci. USA." 89, 5951-5955.

P. A. Bandettini, et al., (1992) "Time course EPI of human brain function during task activation." Magn. Reson. Med 25, 390-397.

Blamire, A. M., et al. (1992). "Dynamic mapping of the human visual cortex by high-speed magnetic resonance imaging." Proc. Natl. Acad. Sci. USA 89: 11069-11073.

Correlation analysis, Fourier analysis, t-test, f-test... SPM, AFNI, brain voyager, FIASCO, FSL, free surfer...

Quality of results and importance of the findings depends on type of question asked, experimental method, and analysis method...

The BOLD Signal

Blood Oxygenation Level Dependent (BOLD) signal changes

First Event-related fMRI Results

Blamire, A. M., et al. (1992). "Dynamic mapping of the human visual cortex by high-speed magnetic resonance imaging." Proc. Natl. Acad. Sci. USA 89: 11069-11073.

<u>Anatomic</u>

Functional

Single Shot EPI

EPI Readout Window

 ≈ 20 to 40 ms

Imaging System Components

Local gradients solved the problem

August, 1991

1992-1999

1991-1992

Imaging System Components

General Electric 3 Tesla Scanner

Blood Perfusion

EPISTAR FAIR

TI (ms)FAIREPISTAR200

Williams, D. S., Detre, J. A., Leigh, J. S. & Koretsky, A. S. (1992) "Magnetic resonance imaging of perfusion using spin-inversion of arterial water." Proc. Natl. Acad. Sci. USA 89, 212-216.

Edelman, R., Siewert, B. & Darby, D. (1994) "Qualitative mapping of cerebral blood flow and functional localization with echo planar MR imaging ans signal targeting with alternating radiofrequency (EPISTAR)." Radiology **192**, 1-8.

Kim, S.-G. (1995) "Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping." Magn. Reson. Med. **34**, 293-301.

Kwong, K. K. et al. (1995) "MR perfusion studies with T1-weighted echo planar imaging." Magn. Reson. Med. 34, 878-887.

Technology MRI	1.5T,3T, 4T Diff. tensor Mg+ 7T >8 channels EPI O Real time fMRI Venography Local Human Head Gradient Coils Quant. ASL Z-shim Baseline ASL Spiral EPI Dynamic IV volume Baseline BOLD Multi-shot fMRI Simultaneous ASL and BOLD Current Imaging?
Methodology Baseline Vo IVIM	Correlation Analysis CO ₂ Calibration Motion Correction Mixed ER and Blocked Parametric Design Multi-Modal Mapping Surface Mapping ICA Free-behavior Designs Phase Mapping Linear Regression Mental Chronometry Event-related Deconvolution Fuzzy Clustering
Interpretation Blood T2 Hemoglobin	BOLD models PET correlation Bo dep. IV vs EV ASL vs. BOLD Bo dep. Pre-undershoot PSF of BOLD Linearity Linearity mapping TE dep Resolution Dep. Extended Stim. Post-undershoot Linearity Metab. Correlation SE vs. GE CO2 effect NIRS Correlation NIRS Correlation Fluctuations Optical Im. Correlation Veins Inflow Balloon Model Electrophys. correlation
Applications	Complex motor LanguageMemoryEmotionMotor learningChildrenTumor vasc.Drug effectsBOLD -V1, M1, A1PresurgicalAttentionOcular DominanceVolume - StrokeV1, V2mappingPriming/LearningClinical Populations△ Volume-V1PlasticityFace recognition

Neuronal Activation ? Measured Signal ? A ? Hemodynamics Noise

Latest Developments...

Temporal Resolution
Spatial Resolution
Sensitivity and Noise
Information Content
Implementation

Latest Developments...

1.Temporal Resolution2.Spatial Resolution3.Sensitivity and Noise4.Information Content5.Implementation

Single Shot EPI

EPI Readout Window

≈ 20 to 40 ms

First Event-related fMRI Results

Blamire, A. M., et al. (1992). "Dynamic mapping of the human visual cortex by high-speed magnetic resonance imaging." Proc. Natl. Acad. Sci. USA 89: 11069-11073.

The major obstacle in BOLD contrast temporal resolution:

P. A. Bandettini, The temporal resolution of Functional MRI *in* "Functional MRI" (C. Moonen, and P. Bandettini., Eds.), p. 205-220, Springer - Verlag, 1999.

Hemi-Field Experiment

Cognitive Neuroscience Application:

Understanding neural system dynamics through task modulation and measurement of functional MRI amplitude, latency, and width PNAS

P. S. F. Bellgowan*[†], Z. S. Saad[‡], and P. A. Bandettini*

*Laboratory of Brain and Cognition and *Scientific and Statistical Computing Core, National Institute of Mental Health, Bethesda, MD 20892

Communicated by Leslie G. Ungerleider, National Institutes of Health, Bethesda, MD, December 19, 2002 (received for review October 31, 2002)

Word vs. Non-word 0°, 60°, 120° Rotation

Estimation of Delay, Width & Amplitude

Magnitude

Lexical effect

Width

Words > Nonwords Nonwords > Words

Rotational effect

p <	10 ⁻⁶
p <	10 ⁻⁵
p <	10 ⁻⁴
p <	10 ⁻³
p <	10 ⁻²

0 deg > 120 deg 120 deg > 0 deg Time Difference In msec > 300 250 to 300 200 to 250 150 to 200 100 to 150

An approach to probe some neural systems interaction by functional MRI at neural time scale down to milliseconds

Seiji Ogawa^{†‡}, Tso-Ming Lee[†], Ray Stepnoski[†], Wei Chen[§], Xiao-Hong Zhu[§], and Kamil Ugurbil[§]

11026–11031 PNAS September 26, 2000 vol. 97 no. 20

Latest Developments...

1.Temporal Resolution2.Spatial Resolution3.Sensitivity and Noise4.Information Content5.Implementation

Single Shot Imaging

EPI Readout Window

 ≈ 20 to 40 ms

Partial k-space imaging

Partial k-space imaging

Fractional Signal Change

Jesmanowicz, P. A. Bandettini, J. S. Hyde, (1998) "Single shot half k-space high resolution EPI for fMRI at 3T." *Magn. Reson. Med.* 40, 754-762.

Multishot Imaging

Window 2

EPI

Multi Shot EPI

SENSE Imaging

 \approx 5 to 30 ms

Pruessmann, et al.

P. A. Bandettini, E. C. Wong, Magnetic resonance imaging of human brain function: principles, practicalities, and possibilities, *in* "Neurosurgery Clinics of North America: Functional Imaging" (M. Haglund, Ed.), p.345-371, W. B. Saunders Co., 1997.

Anatomy

BOLD

Perfusion

P. A. Bandettini, E. C. Wong, Magnetic resonance imaging of human brain function: principles, practicalities, and possibilities, *in* "Neurosurgery Clinics of North America: Functional Imaging" (M. Haglund, Ed.), p.345-371, W. B. Saunders Co., 1997.

ODC Maps using fMRI

 Identical in size, orientation, and appearance to those obtained by optical imaging¹ and histology^{3,4}.

¹Malonek D, Grinvald A. *Science* 272, 551-4 (1996). ³Horton JC, Hocking DR. *J Neurosci* 16, 7228-39 (1996). ⁴Horton JC, et al. *Arch Ophthalmol* 108, 1025-31 (1990).

Menon, et al

Latest Developments...

1.Temporal Resolution2.Spatial Resolution3.Sensitivity and Noise4.Information Content5.Implementation

The spatial extent of the BOLD response

Ziad S. Saad,^{a,b,*} Kristina M. Ropella,^b Edgar A. DeYoe,^c and Peter A. Bandettini^a

^a Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, MD 20892-1148, USA
 ^b Department of Biomedical Engineering Marquette University, Milwaukee, WI 53233, USA
 ^c Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA

Received 16 August 2002; revised 29 October 2002; accepted 21 November 2002

NeuroImage

Question: What is the "true" spatial extent of BOLD contrast? Paradigm: Repeated averaging of simple visual task

Temporal S/N vs. Image S/N

N. Petridou

Single shot full k-space echo-planar-imaging with an eight-channel phase array coil at 3T. Jerzy Bodurka¹, Peter van Gelderen², Patrick Ledden³, Peter Bandettini¹, Jeff Duyn² ¹Functional MRI Facility NIMH/NIH, ²Advance MRI NINDS/NIH, ³Nova Medical Inc.

Quadrature Head Coil

8 Channel Array

SNR

TSNR

Latest Developments...

Temporal Resolution
 Spatial Resolution
 Sensitivity and Noise
 Information Content
 Implementation

S. M. Rao et al, (1996) "Relationship between finger movement rate and functional magnetic resonance signal change in human primary motor cortex." *J. Cereb. Blood Flow and Met.* 16, 1250-1254. Logothetis et al. (2001) "Neurophysiological investigation of the basis of the fMRI signal" Nature, 412, 150-157

Spatial Heterogeneity of the Nonlinear Dynamics in the FMRI BOLD Response

Rasmus M. Birn, Ziad S. Saad, and Peter A. Bandettini Laboratory of Brain and Cognition, National Institute of Mental Health, NIH Bethesda, Maryland

Received October 18, 2000

NeuroImage

Question: Do BOLD nonlinearities exhibit spatial heterogeneity? Paradigm: Stimulus duration modulation from 50 ms to 20 sec.

Results – visual task

Sources of this Nonlinearity

Neuronal

• Hemodynamic

Oxygen extraction
Blood volume dynamics

BOLD Correlation with Neuronal Activity

Logothetis et al. (2001) "Neurophysiological investigation of the basis of the fMRI signal" Nature, 412, 150-157.

BOLD Signal: ePts Change (SD Units) 9.00 BOLD LFP 6.00 6.00 MUA SDF 3.00 3.00 to gnal **BOLD Si** -3.00 20 25 30 35 10 15 40 **Time in Seconds**

P. A. Bandettini and L. G. Ungerleider, (2001) "From neuron to BOLD: new connections." Nature Neuroscience, 4: 864-866.

Proc. Natl. Acad. Sci. USA Vol. 96, pp. 9403–9408, August 1999 Neurobiology

Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex

RICHARD D. HOGE*[†], JEFF ATKINSON*, BRAD GILL*, GÉRARD R. CRELIER*, SEAN MARRETT[‡], AND G. BRUCE PIKE*

*Room WB325, McConnell Brain Imaging Centre, Montreal Neurological Institute, Quebec, Canada H3A 2B4; and ‡Nuclear Magnetic Resonance Center, Massachusetts General Hospital, Building 149, 13th Street, Charlestown, MA 02129

CBF

BOLD

N=12

Simultaneous Perfusion and BOLD imaging during graded visual activation and hypercapnia

Computed CMRO₂ Changes

Subject 1

Subject 2

Quantitative measurements of cerebral metabolic rate of oxygen utilization using MRI: a volunteer study

Hongyu An,¹ Weili Lin,²* Azim Celik³ and Yueh Z. Lee²

Latest Developments...

Temporal Resolution
 Spatial Resolution
 Sensitivity and Noise
 Information Content
 Implementation

Neuronal Activation Input Strategies

- 1. Block Design
- 2. Parametric Design
- 3. Frequency Encoding
- 4. Phase Encoding
- 5. Event Related
- 6. Orthogonal Design
- 7. Free Behavior Design

Neuronal Activation Input Strategies

- 1. Block Design
- 2. Parametric Design
- 3. Frequency Encoding
- 4. Phase Encoding
- 5. Event Related
- 6. Orthogonal Design
- 7. Free Behavior Design

P. A. Bandettini, A. Jesmanowicz, E. C. Wong, J. S. Hyde, Processing strategies for time-course data sets in functional MRI of the human brain. *Magn. Reson. Med.* 30, 161-173 (1993).

spectral density

c.c. > 0.5 with spectra

P. A. Bandettini, A. Jesmanowicz, E. C. Wong, J. S. Hyde, Processing strategies for time-course data sets in functional MRI of the human brain. *Magn. Reson. Med.* 30, 161-173 (1993).

Neuronal Activation Input Strategies

- 1. Block Design
- 2. Parametric Design
- 3. Frequency Encoding
- 4. Phase Encoding
- 5. Event Related
- 6. Orthogonal Design
- 7. Free Behavior Design

Proc. Natl. Acad. Sci. USA Vol. 93, pp. 2382–2386, March 1996 Neurobiology

Mapping striate and extrastriate visual areas in human cerebral cortex

Edgar A. DeYoe*, George J. Carman[†], Peter Bandettini[‡], Seth Glickman^{*}, Jon Wieser^{*}, Robert Cox[§], David Miller[¶], and Jay Neitz^{*}

Neuronal Activation Input Strategies

- 1. Block Design
- 2. Parametric Design
- 3. Frequency Encoding
- 4. Phase Encoding
- 5. Event Related
- 6. Orthogonal Design
- 7. Free Behavior Design

fMRI during tasks that involve brief motion

R. M. Birn, P. A. Bandettini, R. W. Cox, R. Shaker, Event - related fMRI of tasks involving brief motion. *Human Brain Mapping* 7: 106-114 (1999).

Overt Word Production

R. M. Birn, P. A. Bandettini, R. W. Cox, R. Shaker, Event - related fMRI of tasks involving brief motion. *Human Brain Mapping* 7: 106-114 (1999).

Speaking - Blocked Trial

R. M. Birn, P. A. Bandettini, R. W. Cox, R. Shaker, Event - related fMRI of tasks involving brief motion. *Human Brain Mapping* 7: 106-114 (1999).

Speaking - ER-fMRI

0 sec2 sec4 sec

Human Brain Mapping 5:329–340(1997)

Selective Averaging of Rapidly Presented Individual Trials Using fMRI

Anders M. Dale* and Randy L. Buckner

RAW DATA

ESTIMATED RESPONSES

Estimation accuracy vs. average ISI

R. M. Birn, R. W. Cox, P. A. Bandettini, **Detection versus estimation in Event-Related fMRI: choosing the optimal** stimulus timing. NeuroImage 15: 262-264, (2002).

Detectability

Neuronal Activation Input Strategies

- 1. Block Design
- 2. Parametric Design
- 3. Frequency Encoding
- 4. Phase Encoding
- 5. Event Related
- 6. Orthogonal Design
- 7. Free Behavior Design

Free Behavior Design

Use a continuous measure as a reference function:

Task performance
Skin Conductance
Heart, respiration rate...
Eye position
EEG

The Skin Conductance Response (SCR)

Brain activity correlated with SCR during "Rest"

J. C. Patterson II, L. G. Ungerleider, and P. A Bandettini, Task - independent functional brain activity correlation with skin conductance changes: an fMRI study. *NeuroImage* (in press)

Order to appear: 20

Correlates of Alpha Rhythm in BOLD-fMRI

Matthias Moosmann, Petra Ritter, Andrea Brink, Ina Krastel, Sebastian Thees, Felix Blankenburg, Birol Taskin, Jan Ruben, Arno Villringer

The group analysis based on four volunteers showed a negative correlation between alpha-power and fMRI signal in the occipital cortex (figure, left side) and a positive correlation in the thalamus (figure, right side). These findings were not present for the beta band.

Discussion:

Localization of alpha activity in the occipital lobe agrees with previous electrophysiological findings. The negative correlations of fMRI signal and alpha suggests less energy consumption with higher degrees of synchronization. Positive correlations in the thalamus suggest the thalamus to be an active energy consuming generator of alpha synchronization. Our results are in concordance with findings recently reported by other groups, showing deactivations in the occipital pole and activations in the thalamus or in the brain stem using PET (Sadato et al. 1998) and fMRI (Goldman et al. 2001).

OHBM 2002

Simultaneous EEG and fMRI of the alpha rhythm

Robin I. Goldman,^{2,CA} John M. Stern,¹ Jerome Engel Jr¹ and Mark S. Cohen

Ahmanson-Lovelace Brain Mapping Center, UCLA, 660 Charles Young Drive South, Los Angeles, CA 90095; ¹Department of Neurology, UCLA School of Medicine, Los Angeles, CA; ²Hatch Center for MR Research, Columbia University, HSD, 710 W. 168th St., NIB-I, Mailbox 48, NY, NY 10032, USA

CA.2Corresponding Author and Address: rg2l46@columbia.edu

Received 28 October 2002; accepted 30 October 2002

DOI: 10.1097/01.wnr.0000047685.08940.d0

Image quality...

3D z-Shim Method for Reduction of Susceptibility Effects in BOLD fMRI

Gary H. Glover*

Extra Stuff..

Lie Detection

Human Brain Mapping 15:157–164(2002)
 DOI 10.1002/hbm.10020

Lie Detection by Functional Magnetic Resonance Imaging

Tatia M.C. Lee,^{1*} Ho-Ling Liu,² Li-Hai Tan,³ Chetwyn C.H. Chan,⁴ Srikanth Mahankali,⁵ Ching-Mei Feng,⁵ Jinwen Hou,⁵ Peter T. Fox,⁵ and Jia-Hong Gao⁵

(a) Digit Memory Task

(b) Autobiographic Memory Task

L

Real Time fMRI

End of Acquisition

< 1 s to render

Blocked trials: 20 s on/20 s off 8 blocks

Blocks: <u>12345678</u>

Color shows through brain

Correlation > 0.45

Neuronal Current Imaging

Toward Direct Mapping of Neuronal Activity: MRI Detection of Ultraweak, Transient Magnetic Field Changes

Jerzy Bodurka^{1*} and Peter A. Bandettini^{1,2}

•Preliminary models suggest that magnetic field changes on the order of 0.1 to 1 nT are induced (at the voxel scale) in the brain.

•These changes induce about a 0.01 Hz frequency shift or 0.09 deg (@ TE = 30 ms) phase shift.

• Question: Is this detectable?

In Vitro Results

Newborn rat brains have been found to exhibit spontaneous and synchronous firing at specific frequencies

Plenz, D. and S.T. Kital. Nature, 1999. 400: p. 677-682.

Results

<u>Active</u> state: 10 min, <u>Inactive</u> state: 10 min after TTX admin.

*: activity#: scanner pump frequency

Petridou et al.

Phase v=0.12Hz

Closed

Open

Decision Making

Heekeren et al

 Shimming Acoustic Noise Multishot Techniques Increased Gradient Performance Higher Field Strengths Surface Coil Arrays Calibration / Quantification Embedded Functional Contrast Noise / Fluctuations Direct Neuronal Current Imaging Clinical Populations Neuronal, Vascular, and Metabolic Information

Director: Peter Bandettini Staff Scientists: Sean Marrett Jerzy Bodurka Frank Ye Wen-Ming Luh **Computer Specialist:** Adam Thomas Post Docs: Rasmus Birn Hauke Heekeren David Knight Patrick Bellgowan **Ziad Saad**

Graduate Student: Natalia Petridou Post-Bac. IRTA Students: Elisa Kapler August Tuan Dan Kelley Hahn Nguen Visiting Fellows: Sergio Casciaro Marta Maieron **Guosheng Ding Clinical Fellow:** James Patterson **Psychologist:** Julie Frost

Summer Students: Hannah Chang Courtney Kemps **Douglass Ruff** Carla Wettig Kang-Xing Jin **Program Assistant:** Kay Kuhns Scanning Technologists: Karen Bove-Bettis Paula Rowser

