Magnetic Resonance Imaging of Human Brain Function: Methods, Issues, and Opportunities

Peter A. Bandettini

Unit on Functional Imaging Methods & Functional MRI Facility

Laboratory of Brain and Cognition National Institute of Mental Health

Functional Neuroimaging Techniques

Types of Functional MRI Contrast

Blood Volume

•BOLD

Perfusion

•CMRO₂

Bulk Susceptibility Contrast

Susceptibility-Induced Field Distortion in the Vicinity of a Microvessel \perp to B₀.

Types of Functional MRI Contrast

•BOLD

Perfusion

•CMRO₂

2.5 to 3 μ m 3 to 15 μ m 15 to ∞ μ m Compartment size

GE TE = 30 ms

SE TE = 110 ms

Activation-Induced Blood Volume Change

Blood Volume

Photic Stimulation

MRI Image showing activation of the Visual Cortex

From Belliveau, et al. Science Nov 1991

MSC - perfusion

Types of Functional MRI Contrast

Blood Volume

Perfusion

•CMRO₂

L. Pauling, C. D. Coryell, (1936) "The magnetic properties and structure of hemoglobin, oxyhemoglobin, and carbonmonoxyhemoglobin." Proc.Natl. Acad. Sci. USA 22, 210-216.

Thulborn, K. R., J. C. Waterton, et al. (1982). "Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field." Biochim. Biophys. Acta. 714: 265-270.

S. Ogawa, T. M. Lee, A. R. Kay, D. W. Tank, (1990) "Brain magnetic resonance imaging with contrast dependent on blood oxygenation." Proc. Natl. Acad. Sci. USA 87, 9868-9872.

R. Turner, D. LeBihan, C. T. W. Moonen, D. Despres, J. Frank, (1991). Echo-planar time course MRI of cat brain oxygenation changes. Magn. Reson. Med. 27, 159-166.

ΔO_2 saturation

-190.6 190.6

An (rad/sec)

BOLD Contrast in the Detection of Neuronal Activity

Alternating Left and Right Finger Tapping

~ 1992

K. K. Kwong, et al, (1992) "Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation." Proc. Natl. Acad. Sci. USA. 89, 5675-5679.

S. Ogawa, et al., (1992) "Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc. Natl. Acad. Sci. USA." 89, 5951-5955.

P. A. Bandettini, et al., (1992) "Time course EPI of human brain function during task activation." Magn. Reson. Med 25, 390-397.

Blamire, A. M., et al. (1992). "Dynamic mapping of the human visual cortex by high-speed magnetic resonance imaging." Proc. Natl. Acad. Sci. USA 89: 11069-11073.

Correlation analysis, Fourier analysis, t-test, f-test...

$\Delta R2^* / \Delta R2$

average $\triangle R2^* / \triangle R2 \approx 3$ to 4

Finger Movement

Toe Movement

Left

Right

Finger Movement Tactile Stimulation

Simple Right

Complex Right

Imagined Complex Right

Simple Left

Complex Left

Imagined Complex Left

Reading

Listening to Spoken Words

BOLD dynamics

<u>Anatomic</u>

Functional

Single Shot Echo Planar Imaging (EPI)

EPI Readout Window

 ≈ 20 to 40 ms

Imaging System Components

1991-1992

1992-1999

Imaging System Components

General Electric 3 Tesla Scanner

Types of Functional MRI Contrast

Blood Volume

•BOLD

•CMRO₂

Blood Perfusion

EPISTAR FAIR

TI (ms)	FAIR	EPISTA
200		
400		
600		
800		
1000		
1200		

Williams, D. S., Detre, J. A., Leigh, J. S. & Koretsky, A. S. (1992) "Magnetic resonance imaging of perfusion using spin-inversion of arterial water." Proc. Natl. Acad. Sci. USA 89, 212-216.

Edelman, R., Siewert, B. & Darby, D. (1994) "Qualitative mapping of cerebral blood flow and functional localization with echo planar MR imaging ans signal targeting with alternating radiofrequency (EPISTAR)." Radiology **192**, 1-8.

Kim, S.-G. (1995) "Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping." Magn. Reson. Med. **34**, 293-301.

Kwong, K. K. et al. (1995) "MR perfusion studies with T1-weighted echo planar imaging." Magn. Reson. Med. 34, 878-887.
Comparison with Positron Emission Tomography

PET: $H_2^{15}O$

P. A. Bandettini, E. C. Wong, Magnetic resonance imaging of human brain function: principles, practicalities, and possibilities, *in* "Neurosurgery Clinics of North America: Functional Imaging" (M. Haglund, Ed.), p.345-371, W. B. Saunders Co., 1997.

Anatomy

P. A. Bandettini, E. C. Wong, Magnetic resonance imaging of human brain function: principles, practicalities, and possibilities, *in* "Neurosurgery Clinics of North America: Functional Imaging" (M. Haglund, Ed.), p.345-371, W. B. Saunders Co., 1997.

Types of Functional MRI Contrast

Blood Volume

•BOLD

Perfusion

Hemodynamic Stress Calibration

5% CO2

12% 02

P. A. Bandettini, E. C. Wong, A hypercapnia - based normalization method for improved spatial localization of human brain activation with fMRI. *NMR in Biomedicine* 10, 197-203 (1997).

Proc. Natl. Acad. Sci. USA Vol. 96, pp. 9403-9408, August 1999 Neurobiology

Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex

RICHARD D. HOGE*[†], JEFF ATKINSON*, BRAD GILL*, GÉRARD R. CRELIER*, SEAN MARRETT[‡], AND G. BRUCE PIKE*

*Room WB325, McConnell Brain Imaging Centre, Montreal Neurological Institute, Quebec, Canada H3A 2B4; and *Nuclear Magnetic Resonance Center, Massachusetts General Hospital, Building 149, 13th Street, Charlestown, MA 02129

CBF

BOLD

800

1000 1200 1400

N=12

Simultaneous Perfusion and BOLD imaging during graded visual activation and hypercapnia

Computed CMRO₂ Changes

Subject 1

Subject 2

R. Hoge et al.

Direct Neuronal Current Imaging?

Toward Direct Mapping of Neuronal Activity: MRI Detection of Ultraweak, Transient Magnetic Field Changes

Jerzy Bodurka^{1*} and Peter A. Bandettini^{1,2}

•Preliminary models suggest that magnetic field changes on the order of 0.1 to 1 nT are induced (at the voxel scale) in the brain.

•These changes induce about a 0.01 Hz frequency shift or 0.09 deg (@ TE = 30 ms) phase shift.

•Question: Is this detectable?

In Vitro Results

Newborn rat brains have been found to exhibit spontaneous and synchronous firing at specific frequencies

25 mV

10 s

Results

Active state: 10 min, Inactive state: 10 min after TTX admin.

*: activity#: scanner pump frequency

Petridou et al.

Latest Developments...

Temporal Resolution
Spatial Resolution
Sensitivity and Noise
Information Content
Implementation

Latest Developments...

Temporal Resolution
Spatial Resolution
Sensitivity and Noise
Information Content
Implementation

Single Shot EPI

EPI Readout Window

≈ 20 to 40 ms

R. L. Savoy, et al., Pushing the temporal resolution of fMRI: studies of very brief visual stimuli, onset variability and asynchrony, and stimulus-correlated changes in noise [oral], 3'rd Proc. Soc. Magn. Reson., Nice, p. 450. (1995).

The major obstacle in BOLD contrast temporal resolution:

P. A. Bandettini, The temporal resolution of Functional MRI *in* "Functional MRI" (C. Moonen, and P. Bandettini., Eds.), p. 205-220, Springer - Verlag, 1999.

A tangent into venograms (3 Tesla)

MP-RAGE

3D T-O-F MRA 3D Venous PC

MR Venogram

Hemi-Field Experiment

An approach to probe some neural systems interaction by functional MRI at neural time scale down to milliseconds

Seiji Ogawa14, Tso-Ming Lee1, Ray Stepnoski1, Wei Chen5, Xiao-Hong Zhu5, and Kamil Ugurbil5

"Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974; and "Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN 55455

11026–11031 PNAS September 26, 2000 vol. 97 no. 20

Latest Developments...

Temporal Resolution
Spatial Resolution
Sensitivity and Noise
Information Content
Implementation

Single Shot Imaging

EPI Readout Window

 ≈ 20 to 40 ms

Multishot Imaging

Multi Shot EPI

Partial k-space imaging

Fractional Signal Change

Jesmanowicz, P. A. Bandettini, J. S. Hyde, (1998) "Single shot half k-space high resolution EPI for fMRI at 3T." *Magn. Reson. Med.* 40, 754-762.

SENSE Imaging

as low as 5 ms

Pruessmann, et al.

Ocular Dominance Column Mapping using fMRI

Menon, R. S., S. Ogawa, et al. (1997). "Ocular dominance in human V1 demonstrated by functional magnetic resonance imaging." <u>J Neurophysiol</u> 77(5): 2780-7.

Optical Imaging

R. D. Frostig et. al, PNAS 87: 6082-6086, (1990).

Latest Developments...

Temporal Resolution
Spatial Resolution
Sensitivity and Noise
Information Content
Implementation

The spatial extent of the BOLD response

Ziad S. Saad,^{a,b,*} Kristina M. Ropella,^b Edgar A. DeYoe,^c and Peter A. Bandettini^a

^a Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, MD 20892-1148, USA
^b Department of Biomedical Engineering Marquette University, Milwaukee, WI 53233, USA
^c Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA

Received 16 August 2002; revised 29 October 2002; accepted 21 November 2002

NeuroImage

Question: What is the "true" spatial extent of BOLD contrast? Paradigm: Repeated averaging of simple visual task

Temporal Standard Deviation

Human Brain

Bottle of Water
Respiratory

Cardiac

Single shot full k-space echo-planar-imaging with an eight-channel phase array coil at 3T. Jerzy Bodurka¹, Peter van Gelderen², Patrick Ledden³, Peter Bandettini¹, Jeff Duyn² ¹Functional MRI Facility NIMH/NIH, ²Advance MRI NINDS/NIH, ³Nova Medical Inc.

Quadrature Head Coil

128 x 96

64 x 48

128 x 96

8 Channel Array

SNR

TSNR

Latest Developments...

Temporal Resolution
 Spatial Resolution
 Sensitivity and Noise
 Information Content
 Implementation

Motor Cortex

Auditory Cortex

S. M. Rao et al, (1996) "Relationship between finger movement rate and functional magnetic resonance signal change in human primary motor cortex." *J. Cereb. Blood Flow and Met.* 16, 1250-1254.

J. R. Binder, et al, (1994). "Effects of stimulus rate on signal response during functional magnetic resonance imaging of auditory cortex." *Cogn. Brain Res.* 2, 31-38

S. M. Rao et al, (1996) "Relationship between finger movement rate and functional magnetic resonance signal change in human primary motor cortex." *J. Cereb. Blood Flow and Met.* 16, 1250-1254. Logothetis et al. (2001) "Neurophysiological investigation of the basis of the fMRI signal" Nature, 412, 150-157

Spatial Heterogeneity of the Nonlinear Dynamics in the FMRI BOLD Response

Rasmus M. Birn, Ziad S. Saad, and Peter A. Bandettini Laboratory of Brain and Cognition, National Institute of Mental Health, NIH Bethesda, Maryland

Received October 18, 2000

NeuroImage

Question: Do BOLD nonlinearities exhibit spatial heterogeneity? Paradigm: Stimulus duration modulation from 50 ms to 20 sec.

Sources of this Nonlinearity

- Neuronal
- Hemodynamic
 - Oxygen extraction
 Blood volume dynamics

BOLD Correlation with Neuronal Activity

Logothetis et al. (2001) "Neurophysiological investigation of the basis of the fMRI signal" Nature, 412, 150-157.

Latest Developments...

Temporal Resolution
 Spatial Resolution
 Sensitivity and Noise
 Information Content
 Implementation

Neuronal Activation Input Strategies

- 1. Block Design
- 2. Parametric Design
- 3. Frequency Encoding
- 4. Phase Encoding
- 5. Event Related
- 6. Orthogonal Design
- 7. Free Behavior Design

Neuronal Activation Input Strategies

- 1. Block Design
- 2. Parametric Design
- 3. Frequency Encoding
- 4. Phase Encoding
- 5. Event Related
- 6. Orthogonal Design
- 7. Free Behavior Design

Proc. Natl. Acad. Sci. USA Vol. 93, pp. 2382–2386, March 1996 Neurobiology

Mapping striate and extrastriate visual areas in human cerebral cortex

Edgar A. DeYoe*, George J. Carman[†], Peter Bandettini[‡], Seth Glickman^{*}, Jon Wieser^{*}, Robert Cox[§], David Miller[¶], and Jay Neitz^{*}

Neuronal Activation Input Strategies

- 1. Block Design
- 2. Parametric Design
- 3. Frequency Encoding
- 4. Phase Encoding
- 5. Event Related
- 6. Orthogonal Design
- 7. Free Behavior Design

Free Behavior Design

Use a continuous measure as a reference function:

•Task performance
•Skin Conductance
•Heart, respiration rate...
•Eye position
•EEG

The Skin Conductance Response (SCR)

Brain activity correlated with SCR during "Rest"

J. C. Patterson II, L. G. Ungerleider, and P. A Bandettini, Task - independent functional brain activity correlation with skin conductance changes: an fMRI study. *NeuroImage* 17: 1787-1806, (2002).

Technology MRI	1.5T,3T, 4T Diff. tensor Mg+ 7T >8 channels EPI on Clin. Syst. Real time fMRI Venography SENSE Local Human Head Gradient Coils Quant. ASL 2-shim Baseline Susceptibility ASL Spiral EPI Dynamic IV volume Simultaneous ASL and BOLD Current Imaging?
Methodology Baseline Vo IVIM	Iume Correlation Analysis CO2 Calibration Iume Motion Correction Mixed ER and Blocked Parametric Design Multi-Modal Mapping Surface Mapping ICA Free-behavior Designs Phase Mapping Mental Chronometry Linear Regression Multi-variate Mapping Event-related Deconvolution Fuzzy Clustering
Interpretation	BOLD models PET correlation B _o dep. IV vs EV ASL vs. BOLD Pre-undershoot PSF of BOLD TE dep Resolution Dep. Extended Stim.
Blood T2 Hemoglobin	Post-undershoot Linearity Metab. Correlation SE vs. GE CO ₂ effect Optical Im. Correlation NIRS Correlation Fluctuations Optical Im. Correlation Veins Inflow Balloon Model Electrophys. correlation
Applications	Complex motor Language Imagery Memory Emotion Motor learning Children Tumor vasc. Drug effects BOLD -V1, M1, A1 Presurgical Attention Ocular Dominance Volume - Stroke V1, V2mapping Priming/Learning Clinical Populations Δ Volume-V1 Plasticity Face recognition
6 82 88	89 90 91 92 93 94 95 96 97 98 99 00 01 02

Director: Peter Bandettini Staff Scientists: Sean Marrett Jerzy Bodurka Frank Ye Wen-Ming Luh **Computer Specialist:** Adam Thomas Post Docs: **Rasmus Birn** Hauke Heekeren David Knight Patrick Bellgowan

Ziad Saad

Graduate Student: Natalia Petridou **Post-Bac. IRTA Students:** Elisa Kapler August Tuan **Dan Kelley** Hahn Nguen Visiting Fellows: Sergio Casciaro Marta Maieron **Guosheng Ding Clinical Fellow: James Patterson Psychologist: Julie Frost**

Summer Students: Hannah Chang **Courtney Kemps Douglass Ruff Carla Wettig** Kang-Xing Jin **Program Assistant:** Kay Kuhns Scanning Technologists: **Karen Bove-Bettis** Paula Rowser

