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Susceptibility Contrast agent bolus injection and 
time series collection of T2* or T2 - weighted 
images

Blood Volume Imaging

Resting    Active



task task
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Blood Oxygenation Imaging
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BOLD

Perfusion

Simultaneous BOLD and Perfusion
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Where fMRI can improve:

•Sensitivity
•Spatial Resolution
•Temporal Resolution
•Interpretation
•Experimental 

 Design/Execution/Analysis
•Other contrast mechanisms



Why Sensitivity?
•More activated signal is present
•Information in the fluctuations
•Shorter scan times
•More subtle comparisons
•Buys higher resolution



 

NeuroImage





Increasing Sensitivity
•Higher field strength
•More and Smaller RF coils
•Reduction of physiological noise



Quadrature Head Coil 8 Channel Array
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Why Higher 
Spatial Resolution?

•Delineation of function
•Possible gain in contrast to noise
•Reduction of signal dropout
•Better registration with high res anatomy



calcarine

Menon, R. S., S. Ogawa, et al. (1997). “Ocular dominance in human V1 demonstrated by 
functional magnetic resonance imaging.” J Neurophysiol 77(5): 2780-7.

R. D. Frostig et. al, PNAS 87: 6082-6086, (1990).

Ocular Dominance Column Mapping using fMRI

Optical Imaging
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Increasing Spatial Resolution
•Multi-shot Imaging (with navigators)
•Partial k-space
•Parallel imaging (SENSE, SMASH, etc..)
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Multishot Imaging

T2* decay

EPI Window 1

T2* decay

EPI Window 2



Partial k-space imaging

T2* decay

EPI Window



≈ 5 to 30 ms

Pruessmann, et al. 

SENSE Imaging



Why higher 
temporal resolution?

•More slices per volume
•Better delineation of hemodynamic response
•Potentially better delineation neuronal activity timing



Increasing 
temporal resolution

•Asynchronous task and TR timing
•Reduce readout window width
•Increased averaging
•Focus on modulation of task timing
•Calibration?
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Neuronal Activation

Hemodynamics
? ? ?

Measured Signal

Noise
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Optimal Detection of Hemodynamic Latency



Cognitive Neuroscience Application:
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Word vs. Non-word 0o, 60o, 120o Rotation

A B

A B

A B

Inferior Frontal Gyrus

Precentral Gyrus

Middle Temporal Gyrus

Regions of Interest



Estimation of Delay, Width & Amplitude
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Interpretation

•More direct neuronal information
•More quantitative physiologic information
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Sources of this Nonlinearity

• Neuronal

• Hemodynamic

– Oxygen extraction
– Blood volume 

dynamics
D Volume

Flow In Flow Out

Oxygen Extraction



BOLD Correlation with Neuronal Activity

Logothetis et al. (2001) 
“Neurophysiological investigation 
of the basis of the fMRI signal” 
Nature, 412, 150-157.

P. A. Bandettini and L. G. 
Ungerleider, (2001) “From neuron 
to BOLD: new connections.” 
Nature Neuroscience, 4:  864-866.
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Ongoing work: Modulation of neuronal activation

Planned work: 
•Single unit monkey recordings with identical stimuli
•Identical experiments with MEG in humans



Experimental 
Design, Execution, and Analysis



Neuronal Activation Input Strategies

1. Block Design

2. Parametric Design

3. Frequency Encoding

4. Phase Encoding

5. Event Related

6. Orthogonal Design

7. Free Behavior Design



Detectability – constant ISI
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Detectability vs. Average ISI
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R. M. Birn, R. W. Cox, P. A. Bandettini, Detection versus estimation in Event-
Related fMRI: choosing the optimal stimulus timing. NeuroImage 15: 262-264, 
(2002). 



Estimation accuracy vs. average ISI
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Rapid event-related design with varying ISI

25% ON
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A practical implication….
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fMRI during tasks that involve brief 
motion

motion BOLD response

task

BOLD response

t

motion
task

Blocked Design

Event-Related Design

R. M. Birn, P. A. Bandettini, R. W. Cox, R. Shaker, Event - related fMRI of tasks 
involving brief motion. Human Brain Mapping 7: 106-114 (1999). 
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R. M. Birn, P. A. Bandettini, R. W. Cox, R. Shaker, Event - related fMRI of tasks 
involving brief motion. Human Brain Mapping 7: 106-114 (1999). 



Speaking - Blocked Trial
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R. M. Birn, P. A. Bandettini, R. W. Cox, R. Shaker, Event - related fMRI of tasks 
involving brief motion. Human Brain Mapping 7: 106-114 (1999). 



Speaking - ER-fMRI
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R. M. Birn, P. A. Bandettini, R. W. Cox, R. Shaker, Event - related fMRI of tasks 
involving brief motion. Human Brain Mapping 7: 106-114 (1999). 





Free Behavior Design

Use a continuous measure as a 
reference function:

•Task performance
•Skin Conductance
•Heart, respiration rate..
•Eye position
•EEG



Brain activity correlated with SCR during “Rest”

J. C. Patterson II, L. G. Ungerleider, and P. A Bandettini, Task - independent functional brain activity 
correlation with skin conductance changes: an fMRI study. NeuroImage,  17: 1787-1806, (2002). 



Neuronal Current Imaging

New Contrast?



The Basic Idea…

J.P. Wikswo Jr et al.  J Clin Neuronphy 8(2): 170-188, 1991

100 fT at on surface of skull  



Derivation of B field generated in an MRI 

voxel by a current dipole
Single dendritic tree having a diameter d, and length L behaves like a conductor with 
conductivity s. Resistance is R=V/I, where R=4L/(pd2 s). From Biot-Savart:

r2B=               =        
µ0
4p

Q
r2

µ0
16

d2 sV

by substituting d = 4µm, s » 0.25 W-1 m-1, V = 10mV and 

r = 4cm (measurement distance when using MEG) the resulting value is:  B»0.002 fT 

Because BMEG=100fT is measured by MEG on the scalp, (0.002 fT x 50,000 = 100 fT), 
must coherently act to generate such field. These bundles of neurons produce, within a 
typical voxel, 1 mm x 1 mm x 1 mm, a field of order:
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J. Bodurka, P. A. Bandettini. Toward direct mapping of neuronal activity: MRI detection of ultra 
weak transient magnetic field changes. Magn. Reson. Med. 47: 1052-1058, (2002).



Some background…

J. Bodurka, P. A. Bandettini. Toward direct mapping of neuronal activity: MRI detection of ultra 
weak transient magnetic field changes. Magn. Reson. Med. 47: 1052-1058, (2002).

M. Singh, Sensitivity of MR phase shift to detect evoked neuromagnetic fields inside the head.
IEEE Transactions on Nuclear Science. 41: 349-351, (1994).

D. Konn, P. Gowland, R. Bowtell, MRI detection of weak magnetic fields due to an extended 
current dipole in a conducting sphere: a model for direct detection of neuronal currents in the brain. 
Magn. Reson. Med. 50: 40-49, (2003).

J. Xiong, P. T. Fox, J.-H. Gao, Direct MRI Mapping of neuronal activity. Human Brain 
Mapping, 20: 41-49, (2003)

G. C. Scott, M. L. Joy, R. L. Armstrong, R. M. Henkelman, RF current density imaging 
homogeneous media. Magn. Reson. Med. 28: 186-201, (1992).

H. Kamei, J, Iramina, K. Yoshikawa, S. Ueno, Neuronal current distribution imaging using 
MR. IEEE Trans. On Magnetics, 35: 4109-4111, (1999)
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J. Bodurka, P. A. Bandettini. Toward direct mapping of neuronal activity: MRI detection of ultra weak 
transient magnetic field changes, Magn. Reson. Med. 47: 1052-1058, (2002). 
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Phase vs. Magnitude Detection…

0.1 to 0.3 Deg.



100 µm

25 mV
10 s

in vitro model

Patch electrode recording

•coronal sections of newborn-rat 
brains ; in-plane:~1mm2, thickness: 
~60-100 µm 

Neuronal Population: 10,000-50,000

•  Spontaneous synchronized activity ; current: ~ 180nA-2µA, 
   DB: ~ 60pT-0.5nT 

Plenz, D. and S.T. Kital. Nature, 1999. 400: p. 677-682.

Cortex

Striatum

Subthalamic nucleus

Globus Pallidus



Imaging
• 3T, Surface coil receive
• FSE structural images (256x256)
• SE EPI single shot, TE: 60ms, TR:1s, flip angle: 900,  

   FOV: 18cm, matrix: 64x64, 4 slices (3mm)

methods - imaging 

Cover slip Heating 
pad

Culture 
site

ACSF
site



Six Experiments

two conditions per experiment

methods - imaging 

Active    

600 images

neuronal activity present

Inactive 

600 images 

neuronal activity terminated

via TTX administration



results

A: 0.15 Hz activity, on/off frequency
B: activity
C: scanner noise (cooling-pump)
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Strategies for Detection
•Time shifted sampling
•Under sampling



Time shifted sampling

M. Singh, Sensitivity of MR phase shift to detect evoked neuromagnetic fields inside the head.
IEEE Transactions on Nuclear Science. 41: 349-351, (1994).
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Caution, Despair, Hope…

•Need to rule out BOLD or other mechanisms

•Noise is larger than effect
•MR sampling rate is slow

•Neuronal activation timing is variable and unspecified
•Models describing spatial distribution and locally induced 
magnetic fields remain relatively uncharacterized…therefore 
could be off by up to an order of magnitude.

•Well characterized stimuli
•“Transient-tuned” pulse sequences (spin-echo, multi-echo)
•Sensitivity and/or resolution improvements
•Simultaneous electrophysiology – animal models?
•Synchronization improvements.
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