Functional MRI: Basics and Beyond

Peter A. Bandettini, Ph.D.

Section on Functional Imaging Methods http://fim.nimh.nih.gov Laboratory of Brain and Cognition & Functional MRI Facility http://fnif.nimh.nih.gov

"fMRI" or "functional MRI"

Motor (black) Primary Sensory (red) Integrative Sensory (violet) Basic Cognition (green) High-Order Cognition (yellow) Emotion (blue)

J. Illes, M. P. Kirschen, J. D. E. Gabrielli, Nature Neuroscience, 6 (3)m p.205

Technology

Methodology

fMRI Contrast

Blood Volume Blood Oxygenation Perfusion New Contrasts The HRF: Spatial and Temporal Resolution The HRF: Interpretation

fMRI Methodology

Paradigm Design Sensitivity and Noise **Blood Volume**

What started it all...

Photic Stimulation

MRI Image showing activation of the Visual Cortex

From Belliveau, et al. Science Nov 1991

MSC - perfusion

Blood Volume

Resting

Active

MRI vs. fMRI

TF

Local Gradient Coil (low inductance)

Whole body gradients (more powerful amplifiers)

Oxygenated and deoxygenated red blood cells have different magnetic properties

red blood cells

oxygenated

deoxygenated

L. Pauling, C. D. Coryell, Proc.Natl. Acad. Sci. USA 22, 210-216, **1936**. K.R. Thulborn, J. C. Waterton, et al., *Biochim. Biophys. Acta. 714: 265-270*, **1982**. S. Ogawa, T. M. Lee, A. R. Kay, D. W. Tank, Proc. Natl. Acad. Sci. USA 87, 9868-9872, **1990**.

Cerebral Tissue Activation

Local Vasodilatation

Increase in Cerebral Blood Flow and Volume Oxygen Delivery Exceeds Metabolic Need

Increase in Capillary and Venous Blood Oxygenation

Decrease in Deoxy-hemoglobin

Deoxy-hemoglobin: paramagnetic Oxy-hemoglobin: diamagnetic

Decrease in susceptibility-related intravoxel dephasing

Increase in T2 and T2*

Local Signal Increase in T2 and T2* - weighted sequences

Courtesy of Arno Villringer

•K. K. Kwong, et al, (1992) "Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation." Proc. Natl. Acad. Sci. USA. 89, 5675-5679.

•S. Ogawa, et al., (1992) "Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc. Natl. Acad. Sci. USA." 89, 5951–5955.

•P. A. Bandettini, et al., (1992) "Time course EPI of human brain function during task activation." Magn. Reson. Med 25, 390-397.

•Blamire, A. M., et al. (1992). "Dynamic mapping of the human visual cortex by high-speed magnetic resonance imaging." Proc. Natl. Acad. Sci. USA 89: 11069-11073.

First Event-related fMRI Results

Blamire, A. M., et al. (1992). "Dynamic mapping of the human visual cortex by high-speed magnetic resonance imaging." Proc. Natl. Acad. Sci. USA 89: 11069-11073.

Activation Statistics

Functional images

Courtesy, Robert Cox

EPISTAR

Perfusion Time Series

Perfusion	TI (ms)	FAIR EPISTAR
	200	
	400	$\begin{array}{c} 2^{(1)} (0) (2) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} $
	600	
	800	
	1000	
	1200	

Williams, D. S., Detre, J. A., Leigh, J. S. & Koretsky, A. S. (1992) "Magnetic resonance imaging of perfusion using spin-inversion of arterial water." Proc. Natl. Acad. Sci. USA 89, 212-216.

Edelman, R., Siewert, B. & Darby, D. (1994) "Qualitative mapping of cerebral blood flow and functional localization with echo planar MR imaging ans signal targeting with alternating radiofrequency (EPISTAR)." Radiology **192**, 1-8.

Kim, S.-G. (1995) "Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping." Magn. Reson. Med. **34**, 293-301.

Kwong, K. K. et al. (1995) "MR perfusion studies with T1-weighted echo planar imaging." Magn. Reson. Med. **34**, 878-887.

Simultaneous BOLD and Perfusion

BOLD

Perfusion

Better than BOLD for long duration activation...

GK Aguirre et al, (2002) NeuroImage 15 (3): 488-500

Non-Invasive Blood Volume Changes CMRO₂ Changes Direct Neuronal Current Imaging

Lu et al, MRM 50 (2): 263-274 (2003)

New Contrasts CO2 or O2 Stress Blood Volume Mapping

12% 02

P. A. Bandettini, E. C. Wong, A hypercapnia – based normalization method for improved spatial localization of human brain activation with fMRI. NMR in Biomedicine 10, 197–203 (1997).

Proc. Natl. Acad. Sci. USA Vol. 96, pp. 9403–9408, August 1999 Neurobiology

Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex

RICHARD D. HOGE*[†], JEFF ATKINSON^{*}, BRAD GILL^{*}, GÉRARD R. CRELIER^{*}, SEAN MARRETT[‡], AND G. BRUCE PIKE^{*}

*Room WB325, McConnell Brain Imaging Centre, Montreal Neurological Institute, Quebec, Canada H3A 2B4; and ‡Nuclear Magnetic Resonance Center, Massachusetts General Hospital, Building 149, 13th Street, Charlestown, MA 02129

20 10

0

Magnetic Field

Intracellular Current

Surface Fields

100 fT at on surface of skull And 0.2 nT near source

BOLD

J. Xiong, P. T. Fox, J.-H. Gao, Direct MRI Mapping of neuronal activity. Human Brain Mapping, 20: 41-49, (2003)

In Vitro Results

Organotypic (*no blood supply or hemoglobin traces*) sections of newborn-rat somato-sensory Cortex, or somato-sensory Cortex & Basal Ganglia

Size: in-plane:~1-2mm², thickness: 60-100μm
Neuronal Population: 10,000-100,000

- Spontaneous synchronized activity < 2Hz
- Epileptiform activity
- Spontaneous beta freq. activity (20-30Hz)
- Network Activity Range: ~ $0.5-15\mu V$

Plenz, D. et al. *Neurosci* 70(4): 861-924, 1996

ACSF Culture 2 FSE image

0.15Hz map

1: <u>culture</u>

Active condition: black line Inactive condition: red line

- A: 0.15 Hz activity, on/off frequency
- B: activity
- C: scanner noise (cooling-pump)

The HRF

Neuronal Activation Measured Signal

Hemodynamics

Noise

The HRF

Altered neurovascular coupling: Pathology, drugs

Pathologic state / Drug	Reference
Carotid occlusion	Röther et al. 2002
Transient global ischemia	Schmitz et al. 1998
Penumbra of cerebral ischemia	Mies et al. 1993, Wolf et al. 1997
Subarachnoid hemorrhage	Dreier et al. 2000
Trauma	Richards et al. 2001
Epilepsy	Fink et al. 1996, Brühl et al. 1998, von Pannwitz et al. 2002
Alzheimer´s disease	Hock et al. 1996, Niwa et al. 2000
Theophylline	Ko et al. 1990, Dirnagl et al. 1994
Scopolamine	Tsukada et al. 1998

Courtesy of Arno Villringer

The HRF: Spatial and Temporal Resolution

P. A. Bandettini, (1999) "Functional MRI" 205-220.

0.47×0.47 in plane resolution

Cheng, et al. (2001) Neuron, 32:359-374

PSF FWHM = 3.5mm

S.A. Engel, et al. Investigative Ophthalmology & Visual Science 35 (1994) 1977-1977.

0.54 × 0.54 in plane resolution

Multi-shot with navigator pulse

Menon et al, (1999) MRM 41 (2): 230-235

The HRF: Spatial and Temporal Resolution

In an ideal world... no latency variation

R. Birn

Latency Variation...

P. A. Bandettini, (1999) "Functional MRI" 205-220.

The HRF: Spatial and Temporal Resolution

Word vs. Non-word

0°, 60°, 120° Rotation

Bellgowan, et al (2003), PNAS 100, 15820–15283

fMRI Contrast

Blood Volume Blood Oxygenation Perfusion New Contrasts The HRF: Spatial and Temporal Resolution

fMRI Methodology

Paradigm Design Sensitivity and Noise

47 53 63

E.A. DeYoe, et al, PNAS 93 (1996) 2382-2386.

Detectability vs. Average ISI

R. M. Birn, et al. NeuroImage 15: 262-264, (2002).

Estimation accuracy vs. average ISI

R. M. Birn, et al. NeuroImage 15: 262-264, (2002).

Example of a Set of Orthogonal Contrasts for Multiple Regression

S.M. Courtney, Nature 386 (1997) 608-611.

Resting State Correlations

Activation: correlation with reference function

Rest: seed voxel in motor cortex

B. Biswal et al., MRM, 34:537 (1995)

BOLD correlated with 10 Hz power during "Rest"

Positive

10 Hz power

Negative

Goldman, et al (2002), Neuroreport

BOLD correlated with SCR during "Rest"

J. C. Patterson II, L. G. Ungerleider, and P. A Bandettini, NeuroImage 17: 1787-1806, (2002).

L Middle Occipital Gyrus

Regions showing decreases during cognitive tasks

- L Precuneus/Superior Parietal Lobule
- L Posterior Parieto-Occipital Cortex

decreases from averaged active-passive scan pairs in 9 visual PET experiments Binder et al, 1999: Rest - tones

Mazoyer et al, 2001: Rest conditions jointly compared to 9 cognitive tasks using PET

Current study: Areas that deactivate relative to rest using fMRI and an auditory target Location of deactivation common to two or more of the

McKiernan, et al (2003), Journ. of Cog. Neurosci. 15 (3), 394-408

Paradigm Design Right

Left

Brain regions showing strong correlation with left and right amygdala activity. D. Knight, H. Nguyen

Fit coefficient comparing similarity of ventral AC activity with left and right amygdala activity. Activity within the ventral AC was more strongly associated with left than right amygdala activity.

D. Knight, H. Nguyen

Phantom

Brain

N. Petridou

Cardiac Effects

Cardiac map

8 channel parallel receiver coil

GE 8 channel coil

Nova 8 channel coil

16 channel parallel receiver coil

Α

C

60 61 62 63 64 65 98 67

J. Bodurka, et al, Magnetic Resonance in Medicine 51 (2004) 165-171.

J. Bodurka

SENSE Imaging

\approx 5 to 30 ms

Linear algebra

Pruessmann, et al.

Sensitivity and Noise Stimulus Correlated Motion

R. M. Birn, P. A. Bandettini, R. W. Cox, R. Shaker, Event - related fMRI of tasks involving brief motion. *Human Brain Mapping* 7: 106-114 (1999).

Overt Word Production

R.M. Birn, R. W. Cox, P. A. Bandettini. NeuroImage, 23 1046-1058 (2004)

Working around stimulus correlated motion

R.M. Birn, R. W. Cox, P. A. Bandettini. NeuroImage, 23 1046-1058 (2004)

fMRI Contrast

Blood Volume Blood Oxygenation Perfusion New Contrasts The HRF: Spatial and Temporal Resolution The HRF: Interpretation

fMRI Methodology

Paradigm Design Sensitivity and Noise

Section on Functional Imaging Methods

Rasmus Birn David Knight Anthony Boemio Nikolaus Kriegeskorte Kevin Murphy Monica Smith Najah Waters Marieke Mur Natalia Petridou Jason Diamond

Functional MRI Fa

Kay Kuhns Sean Marrett Wen-Ming Luh Jerzy Bodurka Adam Thomas Jon West

Karen Bove-Bettis Ellen Condon Sahra Omar Alda Ottley Paula Rowser Janet Ebron

