Beyond Spatial, Temporal, and Interpretative Limits of fMRI

Peter A. Bandettini, Ph.D.

Section on Functional Imaging Methods http://fim.nimh.nih.gov Laboratory of Brain and Cognition & Functional MRI Facility http://fmrif.nimh.nih.gov

What really limits fMRI?

Imaging Methodology
 Hemodynamic Response Function

We can typically image faster and at higher resolution than the functional resolution that is determined by the hemodynamic response function.

Single Shot Echo Planar Imaging (EPI)

T2* decay

EPI Readout Window

≈ 20 to 40 ms

How do we improve things?

Multi-shot imaging
Partial k-space imaging
RF coils
SENSE imaging
Higher field strength

Multi-shot imaging

Requires navigator pulses

Temporal resolution and stability tradeoff

Multi-shot imaging

Excitations1248Matrix Size64 x 64128 x 128256 x 128256 x 256

Partial k-space imaging

More warping
Lower image SNR
Improvement in one dimension

Partial k-space imaging

Single - Shot EPI at 3T: Half NEX, 256 x 256, 16 cm FOV

RF coils

8 channel parallel receiver coil

GE 8 channel coil

Nova 8 channel coil

16 channel parallel receiver coil

Α

С

J. Bodurka, et al, MRM 51 (2004) 165-171.

Gain in SNR has diminishing returns

J. Bodurka

Simulated gains in TNSR with doubling sensitivity

SENSE Imaging

MMM ≈ 5 to 30 ms

Gain in resolution per window width
If shorter readout window is used:
Small gain in #slices per TR
Reduced distortions

Reduced Image SNR

Pruessmann, et al.

SENSE Imaging

3T single-shot SENSE EPI using 16 channels: 1.25x1.25x2mm Bodurka et al.

The effect of increasing spatial resolution

Fractional Signal Change

Large vessel effects tend to be amplified...

The HRF Hemodynamic Specificity

Some pulse sequence strategies..

The HRFField strength dependence of intravascular effectsSpin-echo, $^{HbO}_2 = 60$ Gradient-echo, $^{HbO}_2 = 60$

Source of contrast in venograms..

PSFFWHM = 3.5mm

S.A. Engel, et al. Investigative Ophthalmology & Visual Science 35 (1994) 1977-1977.

Detailed structure is extractable

0.47×0.47 in plane resolution

The HRF

0.54×0.54 in plane resolution

Cheng, et al. (2001) Neuron, 32:359-374 Menon et al, (1999) MRM 41 (2): 230-235

Multi-shot with navigator pulse

Perfusion (ASL)

Simultaneous BOLD and Perfusion

BOLD

Perfusion

Is Vascular Space Occupancy Imaging (VASO) more specific?

Lu et al, MRM 50 (2): 263-274 (2003)

Other techniques?

Activation-induced changes in ADC (low b)

A. Song, et al (2002), NeuroImage 17, 742-750

Hypothesized mechanism for ADC change

rest

activation

Averaged ADC time course precedes the BOLD time course

Gangstead and Song, MRM 48, 385-388, 2002

60 s

-0.4

ADC changes appear to be more specific

Visual Stimulation: Flashing and Rotating Checkerboard, 12° Angle

Song et al., NeuroImage, 20, 955-961, 2003.

Temporal resolution

Temporal Resolution

The HRF

How rapidly can one switch on and off?

P. A. Bandettini,, Functional MRI using the BOLD approach: dynamic characteristics and data analysis methods, in "Diffusion and Perfusion: Magnetic Resonance Imaging" (D. L. Bihan, Ed.), p.351-362, Raven Press, New York, 1995.

Temporal Resolution

How brief of a stimulus can one give?

R. L. Savoy, et al., Pushing the temporal resolution of fMRI: studies of very brief visual stimuli, onset variability and asynchrony, and stimulus-correlated changes in noise, 3'rd Proc. Soc. Magn. Reson., Nice, p. 450. (1995).

Temporal Resolution

Proc. Natl. Acad. Sci. USA Vol. 93, pp. 14878–14883, December 1996 Neurobiology

Detection of cortical activation during averaged single trials of a cognitive task using functional magnetic resonance imaging

(neuroimaging/single trial/language/prefrontal)

RANDY L. BUCKNER^{†‡§¶}, PETER A. BANDETTINI^{†‡}, KATHLEEN M. O'CRAVEN^{†||}, ROBERT L. SAVOY^{†||}, STEVEN E. PETERSEN^{**††}, MARCUS E. RAICHLE^{§**††}, AND BRUCE R. ROSEN^{†‡}

Latency variation over space...is huge

P. A. Bandettini, (1999) "Functional MRI" 205-220.

The Hemodynamic Response Function

Hemi-Field Experiment

Right Hemisphere

Left Iemisphere

Task timing modulation

Word vs. Non-word

0°, 60°, 120° Rotation

Bellgowan, et al (2003), PNAS 100, 15820-15283

No calibration

Formisano, E. and R. Goebel, *Tracking cognitive processes with functional MRI mental chronometry.* Current Opinion in Neurobiology, 2003. **13**: p. 174-181.

The HRF Laminar specificity of functional MRI onset times during somatosensory stimulation in rat

Afonso C. Silva* and Alan P. Koretsky

Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892

I5182–15187 | PNAS | November 12, 2002 | vol. 99 | no. 231

No calibration

11.7 T

Temporal resolution factors	Values for each factor
Fastest image acquisition rate	≈64 images/s
Minimum time for signal to significantly deviate from baseline	=3 s
Fastest on-off rate in which amplitude-is not compromised	≈8 s on, 8 s off
Fastest on-off rate in which hemodynamic response keeps up	≈2 s on, 2 s off
Minimum activation duration	≈30 ms (no limit deter- mined yet, but the response behaves similarly below 500 ms)
Standard deviation of baseline signal	~1% (less if physiologi- cal fluctuations and system instabilities are filtered out)
Standard deviation of onset time estimation	≂450 ms
Standard deviation of return to baseline time estimation	≈1250 ms
Standard deviation of entire	≈650 ms
Range of latencies over space	± 2.5 s

P. A. Bandettini, (1999) "Functional MRI" 205-220.

An approach to probe some neural systems interaction by functional MRI at neural time scale down to milliseconds

Seiji Ogawa^{†‡}, Tso-Ming Lee[†], Ray Stepnoski[†], Wei Chen[§], Xiao-Hong Zhu[§], and Kamil Ugurbil[§]

11026–11031 PNAS September 26, 2000 vol. 97 no. 20

Neuronal Currents

J. Xiong, P. T. Fox, J.-H. Gao, Direct MRI Mapping of neuronal activity. Human Brain Mapping, 20: 41-49, (2003)

Perfusion is better than BOLD for slow "state change" comparisons..

GK Aguirre et al, (2002) NeuroImage 15 (3): 488-500

Perfusion vs. BOLD: Low Task Frequency Perfusion BOLD

ASL

Wang et al., 2002

Interpretation Linearity

S. M. Rao et al, (1996) "Relationship between finger movement rate and functional magnetic resonance signal change in human primary motor cortex." *J. Cereb. Blood Flow and Met.* 16, 1250-1254.

Logothetis et al. (2001) "Neurophysiological investigation of the basis of the fMRI signal" Nature, 412, 150-157

Interpretation Linearity

Increases: linearity

R. M. Birn, (2001) NeuroImage, 14: 817-826.

Logothetis et al. (2001) Nature, 412, 150-157.

P. A. Bandettini et al, (2001) Nature Neuroscience, 4: 864-866. Interpretation

Post Undershoot

BOLD post-stimulus undershoot

20 sec Motor Stimulation

A BOLD undershoot without a CBF undershoot could be due to a slow return to baseline of either CBV or CMRO₂

Courtesy Rick Buxton

Interpretation Post Undershoot Simulated BOLD Signal Dynamics

Courtesy Rick Buxton

Interpretation Post Undershoot VASO (Vascular Space Occupancy) Evidence for sustained elevated CMRO₂ (VASO indicates fast return of CBV despite BOLD undershoot)

All activated voxels

Overlapped voxels

Lu, et al: JCBF+M 24:764, 2004

Interpretation $\Delta CMRO_2$

40

30

20

10 0

-10

-20

-30

CBF

BOLD

Simultaneous Perfusion and BOLD imaging during graded visual activation and hypercapnia

Hoge et al, PNAS 96: 9403-9408 (1999)

Interpretation

Baseline CMRO₂?

Potential for baseline OEF and CMRO₂ information?

Interpretation

Inhibition and Decreases

Neg. BOLD

Schmuel et al. (2003) OHBM, 308

Inhibition

Mathiesen, et al (1998), J Physiol 512.2:555-566

Section on Functional Imaging Methods

Rasmus Birn David Knight Anthony Boemio Nikolaus Kriegeskorte Kevin Murphy Monica Smith Najah Waters Marieke Mur Natalia Petridou Jason Diamond

Functional MRI Fa

Kay Kuhns Sean Marrett Wen-Ming Luh Jerzy Bodurka Adam Thomas Jon West

Karen Bove-Bettis Ellen Condon Sahra Omar Alda Ottley Paula Rowser Janet Ebron

