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It is also well established that the characteristics of the HDR
vary across cortical regions as a function of stimulus properties and
experimental parameters. For example, frontal HDRs show late
onset and sustained duration of the HDR peak while motor and
visual sensory cortices show earlier onset and shorter duration in
the HDR to single stimuli (Schacter et al., 1997). Furthemmore, the
amplitude and latency of the HDR appear to change from cortical
to subcortical regions as a function of ISI as well, indicating that
the HDR recovers earlier in subcortical regions compared to
cortical areas (Pollmann et al., 1998). Evidence of variation
between cortical regions in HDR properties and sensitivities to
stimulus presentation characteristics also comes from reports
indicating that stimulus presentation rate does not alter HDR in
bilateral frontal regions for instance, which show a categorical
response to the presence of words irrespective of rate, while
activation in bilateral occipitotemporal regions increases linearly
and the posterior auditory association cortex exhibits a nonlinear
(inverted U) relationship with increasing word rate (Buchel et al.,
1998; Pollmann et al., 1998). Thus, the latency and amplitude of
the HDR waveform vary across brain regions (Aguirre et al., 1998;
Buckner, 1998; Buckner et al., 1996; Huettel and McCarthy, 2001;
Kim et al., 1997; Miezin et al., 2000; Robson et al., 1998).

HDR varies across regions

(plumbing or neuronal?)



superior temporal gyrus (STG) regions (Friston et al., 1998). The
finding of nonlinear additivity has also been demonstrated in the
visual cortex (VC) using ISIs of 1-, 2-, 4-, and 6-s durations
between two consecutive stimuli (Huettel and McCarthy, 2000,
2001). The nonlinear additivity in that study was attributed to the
presence of a refractory period following stimulus presentation,
which in turn modulated the amplitude of the HDR to subsequent
stimuli. Subsequently, numerous studies (Grill-Spector K., 2001;
Huettel and McCarthy, 2000, 2001; Kourtzi Z., 2001; Soon and
Chee, 2003) have described similar phenomena, such as repetition
suppression, repetition priming, or FMR adaptation. Many inves-
tigators have used this phenomenon to examine the role of
particular cortical regions in processing specific stimulus attributes,
with the hypothesis being that if stimulus attributes are processed
in overlapping neural spaces, the HDR elicited in those regions by
repeated stimulation would show suppression effects consistent
with refractory properties (Grill-Spector K., 2001; Kourtzi Z.,
2001). Furthermore, previous studies have also demonstrated that
the characteristics (such as amplitude and latency) as well as
refractory properties of the HDR vary across different cortical
regions (Huettel and McCarthy, 2001). Despite numerous studies
describing refractory or adaptive properties of the HDR, the exact
mechanism and nature of this complex phenomenon remain
unclear. Because a combination of multiple physiological changes
associated with neuronal activity, such as CBF, CMRO,, and CBV,
contributes to the BOLD signal change, it is difficult at this point to
distinguish the differential role of these physiological contributors
upon changes (linear or not) in the BOLD signal associated with
stimulus or task attribute changes. Nevertheless, the “HDR refrac-
tory period™ (or “repetition priming”” or “FMR adaptation™) bears
significant resemblance to the refractoriness exhibited by neurons
in other cortical regions, such as shape adaptation in macaque IT
neurons (Sobotka and Ringo, 1993), and hence may reflect a
hemodynamic counterpart associated with such a phenomenon.

Can FMR adaptation be at least
partially due to hemodynamics?
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Fig. 1. (Experiment 1) Auditory task design: a bref tone of 1000 Hz
presented for 100 ms either singly or in pair. The two stimuli in a pair were
separated by a variable intrapair mterval of 1, 4, or 6 s. Three types of pair
conditions and the single stimulus condition were intermixed randomly
during a presentation of 10 runs (3.5 min each). Forty instances of each
condition were presented during each session.
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Fig. 2. (Experiment 2) Interleaved auditory and visual task design: single
and parred auditory and visual stimuli were presented in an altemating
pattemn to avoid the overlapping response of the same domain. The time
between the two conditions of the same domain varied between 16 and 20 s
while two consecutive trials of different modality are separated by 8—10 s.
Visual stimuli were checkerboards displayed with a duration of 500 ms,
whereas the auditory stimuli were pure tones of 1000 Hz with a duration of
100 ms.



Fig. 4. (Experiment 2) Activation maps in response to smgle and paired
stimulus conditions in both modalities. The response to paired conditions
was calculated by averaging the epochs of BOLD signal within the voxels
activated by single simulus presentations. Note that the t-maps in response
to single and paired conditions mostly overlap, but do not have the same
spatial extent. To eliminate the confounding effects of newly recruited
areas, the BOLD signal analysis for both tnal types was restricted to voxels
that responded to single stmulus presentations.
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Fig. 5. (Experiment 1) The composite HDRs evoked by the parred
conditions aligned to the onset of the first sumulus. Black arrow indicates
the onset of first sumulus in all the conditions. Colored arrows indicate the
onsets of second stimuli in different IPI conditions (Blue: 1 s IPI; Green: 4 s
IPI, Red: 6 s IPI). The HDRs correspond to the matching arrow condition.
Legends indicate the tme interval between the two stmuli in a par. This
figure demonstrates the separation of two peaks as the tme between two
stmuli m a pair mcreases. At the 6 s IPI condition, even though the peaks
are separated and the latency to peak from the onset of second stimulus
recovers, the peak amplitude still remains suppressed compared to the first

peak.
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Fig. 6. (Experiment 2) Visual cortex. Average hemodynamic responses in
visual cortex. (A) HDRs evoked by single and paired stimulus presentation.
Composite HDR to the paired condition shows higher amplitude than the
response evoked by single stimulus. (B) To isolate the contribution of the
second stimulus in a pair to the composite response, the response to the
single stimulus presentation was subtracted from the composite response to
the paired condition and shifted by 1 s to realign to the same time onset.
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Fig. 7. (Experiment 2) Auditory cortex. Average hemodynamic responses in
the auditory cortex. (A) HDRs evoked by single and paired stimuli
presentation. (B) To isolate the contribution of the second stimulus in a pair
to the composite response, the response to the single stimulus presentation
was subtracted from the composite response to the paired condition and
shifted by 1 s to realign to the same time onset.



Table 1

Mean values of the peak amplitude (percent signal change), suppression
index based on peak values (SI = [(S2 / S1) 100]), and latency (second)
measures of the average HDR evoked in VC and STG

Peak Latency

Single Second Sr Single Second

Auditory  0.60 (0.18) 0.15 (0.13) 259 (24.2) 4.7(04) 5.7(0.9)
Visual 067 (0.13) 024 (0.16) 364 (26.0) 5.3(0.6) 6.4(0.9)

Numbers in parenthesis indicate standard deviation.
*SI: suppression index.
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Fig. 8. (Experiment 2) Percent of activated voxels m response to repeated
stimuli m visual and auditory cortices (*P < 0.002).
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Fig. 9. (A) Percent signal change evoked by single and paired visual stimulus presentations in visual and auditory cortical regions. (B) The HDRs evoked by
auditory stimuli in VC and STG (S-VC, single stmulus condition in VC; P-VC, paired stimuli condition in VC; S-STG, single stimulus condition n STG; P-

STG, paired stimulus condition in STG).
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Estimated neuronal input
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Decreases: linearity
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Increases: duty cycle
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Simulation results — Neuronal effects
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An approach to probe some neural systems
interaction by functional MRI at neural
time scale down to milliseconds
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BOLD response amplitude and
linearity

to different stimulus OFF periods
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BOLD response to different
stimulus duty cycles
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Estimate Neuronal Input from
BOLD fMRI
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BOLD response to neuronal
transients
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Balloon Model Parameters

Parameter Description Default Value | Range Evaluated
= Resting oxygen extraction fraction 0.4 03-0.6
Vq Resting blood volume fraction 0.03 0.03-0.18
f Resting relative blood flow 0.01 st 0.01s-0.16s
Af Fractional blood flow change 0.4 -
o Steady-state flow-volume relationship 0.4 0.25-1.0
TITT Blood mean transit time (v /f,) 3s 1.1s-18s
T, Viscoelastic time constant (inflation) 20s 10s-40s
T Viscoelastic time constant (deflation) 20s 10s-40s
a, Weight for deoxyHb change 3.7 28-56
a2 Weight for blood volume change 1.1 0.7-1.9
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Duty Cycle

E(f)=NL , AV E(f)=NL, AV=0 E(f)=Lin, AV E(f)=Lin, AV=0
0.8 0.4 N ' 0.6 d ! T
TU 1 = -
c 0.6 0.4 \ n
2 0.2 1 = \
¢ <
n 04 . 1 § g \
(] 7 70.2[ y
= ) ] ().2
0.2 ] N\
o] 0 S
@ - ]
0 i i
) l | | L L ! |
0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15
time time time time
@ [ | | | | | | | | T I I
o) ls—e —,Uls—f . wl.S_g 7] Dls_h B
o= | 'g "g =
= = = 2
- - = = =1
€ T E g £
< . w v )
o 1L SN 12 ,F od £ Lo .
2 - = g = B,,/e/e/ =
T &~ x o
©
o ! ! ! 1 1 1 | L L 1
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

Duty Cycle Duty Cycle Duty Cycle Duty Cycle



Neuronal effects to explain duty cycle effects
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Different stimulus "OFF” periods

R.M. Birn, et al. Proc. ISMRM, 2001.

measured

BOLD ‘Eﬁ \/W 2 WV /A
Response & \/ / /
______________________________________________ A/ = W SRS
Stimulus
timing
2s 3s 4s 8s 16 s

Brief stimulus OFF periods produce smaller decreases than expected



Varying “"ON” and "OFF” periods

R.M. Birn, et al. Proc. OHBM 2001.
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Varying “"ON” and "OFF” periods

R.M. Birn, et al. Proc. OHBM 2001.
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