Putting the Fun into Functional MRI

Peter A. Bandettini, Ph.D.

Section on Functional Imaging Methods http://fim.nimh.nih.gov Laboratory of Brain and Cognition & Functional MRI Facility http://fmrif.nimh.nih.gov

A brief overview of the three main types of fMRI contrast

Volume

Flow or Perfusion

Oxygenation

Blood Volume

What started it all...

Photic Stimulation

MRI Image showing activation of the Visual Cortex

From Belliveau, et al. Science Nov 1991

MSC - perfusion

Blood Volume

Resting

Active

MRI vs. fMRI

TF

1991-1992

1992-1999

August, 1991

The fun early days of fMRI

Oxygenated and deoxygenated red blood cells have different magnetic properties

red blood cells

oxygenated

deoxygenated

L. Pauling, C. D. Coryell, Proc.Natl. Acad. Sci. USA 22, 210-216, **1936**. K.R. Thulborn, J. C. Waterton, et al., *Biochim. Biophys. Acta. 714: 265-270*, **1982**. S. Ogawa, T. M. Lee, A. R. Kay, D. W. Tank, Proc. Natl. Acad. Sci. USA 87, 9868-9872, **1990**.

Cerebral Tissue Activation

Local Vasodilatation

Increase in Cerebral Blood Flow and Volume Oxygen Delivery Exceeds Metabolic Need

Increase in Capillary and Venous Blood Oxygenation

Decrease in Deoxy-hemoglobin

Deoxy-hemoglobin: paramagnetic Oxy-hemoglobin: diamagnetic

Decrease in susceptibility-related intravoxel dephasing

Increase in T2 and T2*

Local Signal Increase in T2 and T2* - weighted sequences

•K. K. Kwong, et al, (1992) "Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation." Proc. Natl. Acad. Sci. USA. 89, 5675-5679.

•S. Ogawa, et al., (1992) "Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc. Natl. Acad. Sci. USA." 89, 5951–5955.

•P. A. Bandettini, et al., (1992) "Time course EPI of human brain function during task activation." Magn. Reson. Med 25, 390-397.

•Blamire, A. M., et al. (1992). "Dynamic mapping of the human visual cortex by high-speed magnetic resonance imaging." Proc. Natl. Acad. Sci. USA 89: 11069-11073. Local Gradient Coil (low inductance)

Whole body gradients (more powerful amplifiers)

Activation Statistics

Functional images

Perfusion

EPISTAR

Perfusion Time Series

Perfusion

Williams, D. S., Detre, J. A., Leigh, J. S. & Koretsky, A. S. (1992) "Magnetic resonance imaging of perfusion using spin-inversion of arterial water." Proc. Natl. Acad. Sci. USA 89, 212-216.

Edelman, R., Siewert, B. & Darby, D. (1994) "Qualitative mapping of cerebral blood flow and functional localization with echo planar MR imaging ans signal targeting with alternating radiofrequency (EPISTAR)." Radiology **192**, 1-8.

Kim, S.-G. (1995) "Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping." Magn. Reson. Med. **34**, 293-301.

Kwong, K. K. et al. (1995) "MR perfusion studies with T1-weighted echo planar imaging." Magn. Reson. Med. **34**, 878-887.

Perfusion	TI (ms)	FAIR EPISTAR
	200	
	400	$\begin{array}{c} 2^{(1)} (0) (2) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \\ = \frac{1}{2} $
	600	
	800	
	1000	
	1200	

Perfusion

Simultaneous BOLD and Perfusion

BOLD

Perfusion

"fMRI" or "functional MRI"

Motor (black) Primary Sensory (red) Integrative Sensory (violet) Basic Cognition (green) High-Order Cognition (yellow) Emotion (blue)

J. Illes, M. P. Kirschen, J. D. E. Gabrielli, Nature Neuroscience, 6 (3)m p.205

Breakdown of fMRI papers by Journal

■ Fraction (1992-2005) ⊠ Fraction (2005 only)

Fraction of Total FMRI Papers

Percent Change in fMRI Publications of 2005 relative to Average (1992 - 2005) for Each Journal

Percent Change (2005 relative to average from 1992 to 2005)

Methodology

Coil arrays Higher field strength Higher resolution

Methodology

"Resting state" Fluctuation assessment Multi-modal integration Pattern classification Novel Functional Contrasts

Fluctuations Dynamics Cross – modal comparison

Interpretation

Basic Neuroscience Behavior correlation/prediction Pathology correlation / therapy

Applications

Parallel Acquisition

Reasons for higher SNR

-Shorter scan duration -Higher Resolution -More subtle comparisons

Murphy et al.

Parallel Acquisition

8 channel parallel receiver coil

GE 8 channel coil

Nova 8 channel coil

16 channel parallel receiver coil

A

C

J. Bodurka, et al, Magnetic Resonance in Medicine 51 (2004) 165-171.

Sensitivity and Noise

Phantom

Brain

Sensitivity and Noise

N. Petridou

Sensitivity and Noise

Cardiac Effects

Cardiac map

Parallel Acquisition

Resolution, Speed, Surface Coils, Field Strength, etc..

Parallel Acquisition

Simulated gains in TNSR with doubling sensitivity

Temporal SNR

SENSE Imaging

MMM

\approx 5 to 30 ms

Pruessmann, et al.

algebra

SENSE Imaging

3T single-shot SENSE EPI using 16 channels: 1.25x1.25x2mm

7T head coil

3T head coil

High Fields

TSE, 11 echoes, 7 min exam, 20cm FOV, 512×512 (0.4mm × 0.4mm), 3mm thick slices.

7T white matter SNR =65 Gray matter SNR = 76 **3T** white matter SNR =26 Gray matter SNR = 34

Courtesy Larry Wald

Technology FSE **images** at 0.2x.2x1mm³ High Fields

Courtesy Tie-Qiang Li, NINDS

Courtesy Tie-Qiang Li, NINDS

High Fields

fiber bundles?

Courtesy Tie-Qiang Li, NINDS

Courtesy Tie-Qiang Li, NINDS

1700 0

High Fields

A ANK

Layered structure in the visual cortex

New Contrasts

fMRI Contrast

- Volume (gadolinium)
- BOLD
- Perfusion (ASL)
- $\Delta CMRO_2$
- $\Delta Volume (VASO)$
- Neuronal Currents
- Diffusion coefficient
- Temperature

BOLD effect to highlight veins: 3 Tesla

Bove-Bettis, et al (2004), SMRT

Perfusion vs. BOLD: Low Task Frequency

Wang et al., 2002

1. Block Design 2. Frequency End 3. Phase Encoding 4. Event-Related 5. Orthogonal Block Design 6. Free Behavior Design.

Fluctuations and "Resting" State

Resting State Correlations

Activation: correlation with reference function

Rest: seed voxel in motor cortex

B. Biswal et al., MRM, 34:537 (1995)

Fluctuations and "Resting" State

BOLD correlated with 10 Hz power during "Rest"

Positive

10 Hz power

Negative

Goldman, et al (2002), Neuroreport

Fluctuations and "Resting" State

BOLD correlated with SCR during "Rest"

J. C. Patterson II, L. G. Ungerleider, and P. A Bandettini, NeuroImage 17: 1787-1806, (2002).

Pattern Classification

Pattern Classification

Neuron, Vol. 35, 975–987, August 29, 2002, Copyright @2002 by Cell Press

Neural Correlates of Visual Working Memory: fMRI Amplitude Predicts Task Performance

Luiz Pessoa,¹ Eva Gutierrez, Peter A. Bandettini, and Leslie G. Ungerleider Laboratory of Brain and Cognition National Institute of Mental Health National Institutes of Health Bethesda, Maryland 20892

Pattern Classification

HSE-BOLD demonstration of ocular dominance columns human, 7T, 0.5×0.5×3 mm³

Yacoub et al: differential maps contrasting stimulation of the left and right eye

Pattern Classification

Methodology Pattern Classification Ventral temporal category representations

Object categories are associated with distributed representations in ventral temporal cortex

Present photos of common objects <u>blocked by category</u>.

- Use fMRI to measure the pattern of high and low responses across large areas of ventral temporal cortex.
- Observe <u>stable</u>, distributed "category representations"

Pattern Classification

Pattern-recognition analysis of fMRI activity

- Haxby et al. (2001)
- Cox & Savoy (2003)
- Carlson et al. (2003)
- Kamitani & Tong (2005)
- Haynes & Rees (2005)

Neuronal Activation Measured Signal

Hemodynamics

Noise

Altered neurovascular coupling: Pathology, drugs

Pathologic state / Drug	Reference
Carotid occlusion	Röther et al. 2002
Transient global ischemia	Schmitz et al. 1998
Penumbra of cerebral ischemia	Mies et al. 1993, Wolf et al. 1997
Subarachnoid hemorrhage	Dreier et al. 2000
Trauma	Richards et al. 2001
Epilepsy	Fink et al. 1996, Brühl et al. 1998, von Pannwitz et al. 2002
Alzheimer´s disease	Hock et al. 1996, Niwa et al. 2000
Theophylline	Ko et al. 1990, Dirnagl et al. 1994
Scopolamine	Tsukada et al. 1998

Courtesy of Arno Villringer

The HRF: Spatial and Temporal Resolution

Latency Variation...

P. A. Bandettini, (1999) "Functional MRI" 205-220.

The HRF: Spatial and Temporal Resolution

Word vs. Non-word

0°, 60°, 120° Rotation

Bellgowan, et al (2003), PNAS 100, 15820-15283

Current Uses of fMRI

Understanding normal brain organization and changes

-networks involved with specific tasks (low to high level processing) -changes over time (seconds to years) -correlates of behavior (response accuracy, performance changes...) Clinical research

-correlates of specifically activated networks to clinical populations -presurgical mapping -epileptic foci mapping -drug effects

Potential uses of fMRI

Complementary use for clinical diagnosis

-utilization of clinical research results

Clinical treatment and assessment

-drug, therapy, rehabilitation, biofeedback Non clinical uses

-complementary use with behavioral results
-lie detection
-prediction of behavior tendencies (many contexts)
-brain/computer interface

Applications Real time fMRI feedback to reduce chronic pain

Control over brain activation and pain learned by using real-time functional MRI, R. C. deCharms, et al. PNAS, 102; 18626-18631 (2005)

Clinical Applications

Comparison of two groups of normal individuals with differences in the Serotonin Transporter Gene

Serotonin Transporter Genetic Variation and the Response of the Human Amygdala

Ahmad R. Hariri,¹ Venkata S. Mattay,¹ Alessandro Tessitore,¹ Bhaskar Kolachana,¹ Francesco Fera,¹ David Goldman,² Michael F. Egan,¹ Daniel R. Weinberger^{1*}

Amygdala Response: a Group > I Group

4

3

2

First Cohort (N = 14)

Second Cohort (N = 14)

SCIENCE VOL 297 19 JULY 2002

Human Brain Mapping 15:157–164(2002)
 DOI 10.1002/hbm.10020

Lie Detection by Functional Magnetic Resonance Imaging

Tatia M.C. Lee,^{1*} Ho-Ling Liu,² Li-Hai Tan,³ Chetwyn C.H. Chan,⁴ Srikanth Mahankali,⁵ Ching-Mei Feng,⁵ Jinwen Hou,⁵ Peter T. Fox,⁵ and Jia-Hong Gao⁵

L

(b) Autobiographic Memory Task

Figure 1.

Functional maps. Normalized activation brain maps averaged across five subjects demonstrating the statistically significant activations (P < 0.01) in the faking memory impairment condition with the activation for making accurate recall removed when perform-

ing on forced choice testing using (a) Digit Memory and (b) Autobiographic Memory tasks. Planes are axial sections, labeled with the height (mm) relative to the bicommissural line. L, left hemisphere; R, right hemisphere.

R

Section on Functional Imaging Methods

Rasmus Birn David Knight Anthony Boemio Nikolaus Kriegeskorte Kevin Murphy Monica Smith Douglass Ruff Joey Dunsmoor Scott Phelps Jon West

Functional MRI Facility

Kay Kuhns Sean Marrett Wen-Ming Luh Jerzy Bodurka Adam Thomas James Hoskie

Karen Bove-Bettis Ellen Condon Sahra Omar Alda Ottley Paula Rowser Janet Ebron

