Functional MRI: Future at NIH

Peter A. Bandettini, Ph.D.

Section on Functional Imaging Methods http://fim.nimh.nih.gov Laboratory of Brain and Cognition & Functional MRI Facility http://fmrif.nimh.nih.gov

"fMRI" or "functional MRI"

Motor (black) Primary Sensory (red) Integrative Sensory (violet) Basic Cognition (green) High-Order Cognition (yellow) Emotion (blue)

J. Illes, M. P. Kirschen, J. D. E. Gabrielli, Nature Neuroscience, 6 (3)m p.205

Uses

Understanding normal brain organization and changes

-networks involved with specific tasks (low to high level processing) -changes over time (seconds to years)

-correlates of behavior (response accuracy, performance changes...) Clinical research

> -correlates of activated networks to clinical populations -presurgical mapping

Future Uses

Complementary use for clinical diagnosis -utilization of clinical research results -prediction of pathology Clinical treatment and assessment -therapy, rehabilitation, biofeedback -epileptic foci mapping -drug effects Non clinical uses -complementary use with behavioral, anatomical, other modality results -lie detection -prediction of behavior tendencies -brain/computer interface

Technology

Coil arrays Higher field strength Higher resolution

Methodology

"Resting state" Fluctuation assessment Multi-modal integration Pattern classification Novel Functional Contrasts

Fluctuations Dynamics Cross - modal comparison

Interpretation

Basic Neuroscience Behavior correlation/prediction Pathology correlation

Applications

CRADA: fMRI

Goals:

Single shot voxel volume = 1 to 1.5 mm²
Embedded (simultaneous) contrasts at high res.: -volume, BOLD, flow, diffusion
Eliminate signal dropout (better shimming)

Applications:

•High spatial frequency information and simultaneous multiple contrast information is novel and could increase clinical utility of fMRI.

Reasons for higher SNR

-Shorter scan duration -Higher Resolution -More subtle comparisons

Murphy et al.

Experimental Comparison of Signal-to-Noise Between 16 and 8 Element Receive-Only Brain Gapped Array Coils and Birdcage Head Coil at 3 Tesla.

J. Bodurka¹, J. Duyn², L. Talagala³, P. Bandettini^{1,4}

¹Functional MRI Facility, NIMH, NIH, Bethesda, MD, United States, ²Advanced MRI Laboratory, NINDS, NIH, Bethesda, MD, United States, ³NIH MRI Research Facility, NINDS, NIH, Bethesda, MD, United States, ⁴Section of Functional Imagin Method, NIMH, NIH, Bethesda, MD, United States

<u>Table1</u>	<u>GRE</u>		<u>SE</u>		<u>EPI</u>		<u>GRE+SE+EPI</u>	
(N=3)	R2=coil2/coil1	R3=coil3/coil1	R2	R3	R2	R3	R2	R3
bROI	2.7 +/- 0.2	2.8 +/- 0.1	2.0 +/- 0.3	2.4 +/- 0.1	2.8 +/- 0.3	3.0 +/- 0.2	2.5 +/- 0.4	2.7 +/- 0.3
cROI	1.5 +/- 0.1	1.6 +/- 0.1	1.5 +/- 0.2	1.7 +/- 0.1	1.7 +/- 0.2	2.0 +/- 0.1	1.6 +/- 0.1	1.8 +/- 0.2
pcROI	5.2 +/- 0.2	5.7 +/- 0.6	4.9 +/- 0.7	5.8 +/- 0.3	4.4 +/- 0.3	5.6 +/- 0.4	4.8 +/- 0.4	5.7 +/- 0.1

Increasing number of array elements from 8 to 16 results in SNR gains of 10%, 13% and 18% in the whole brain, brain center and periphery, respectively.

Simulated gains in TNSR with doubling sensitivity

Temporal SNR

J. Bodurka

Neuron, Vol. 35, 975–987, August 29, 2002, Copyright @2002 by Cell Press

Neural Correlates of Visual Working Memory: fMRI Amplitude Predicts Task Performance

Luiz Pessoa,¹ Eva Gutierrez, Peter A. Bandettini, and Leslie G. Ungerleider Laboratory of Brain and Cognition National Institute of Mental Health National Institutes of Health Bethesda, Maryland 20892

HSE-BOLD demonstration of ocular dominance columns human, 7T, 0.5×0.5×3 mm³

Yacoub et al: differential maps contrasting stimulation of the left and right eye

SNR improvements allow for high resolution fMRI

Unraveling multisensory integration: patchy organization within human STS multisensory cortex

Michael S Beauchamp¹, Brenna D Argall¹, Jerzy Bodurka², Jeff H Duyn³ & Alex Martin¹

com/natureneuroscience

mg © 2004 Nature Publis

Ventral temporal category representations

Object categories are associated with distributed representations in ventral temporal cortex

- Present photos of common objects <u>blocked by category</u>.
- Use fMRI to measure the pattern of high and low responses across large areas of ventral temporal cortex.
- Observe <u>stable</u>, distributed "category representations"

Functional magnetic resonance imaging (fMRI) "brain reading": detecting and classifying distributed patterns of fMRI activity in human visual cortex

David D. Cox^{a,b,*} and Robert L. Savoy^{a,b,c}

^a Rowland Institute for Science, Cambridge, MA 02142, USA
^b Athinoula A. Martinos Center for Structural and Functional Biomedical Imaging, Charlestown, MA 02129, USA
^c HyperVision, Inc., P.O. Box 158, Lexington, MA 02420, USA

Received 15 July 2002; accepted 10 December 2002

NEUROIMAGE 19 (2): 261-270 Part 1 JUN 2003

Comparison of two groups of normal individuals with differences in the Serotonin Transporter Gene

Serotonin Transporter Genetic Variation and the Response of the Human Amygdala

Ahmad R. Hariri,¹ Venkata S. Mattay,¹ Alessandro Tessitore,¹ Bhaskar Kolachana,¹ Francesco Fera,¹ David Goldman,² Michael F. Egan,¹ Daniel R. Weinberger^{1*}

Amygdala Response: a Group > I Group

4

3

2

Twe

First Cohort (N = 14)

Second Cohort (N = 14)

SCIENCE VOL 297 19 JULY 2002