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1.Dynamics

Motivation:

•To understand neuronal and non-neuronal 
influences on the fMRI signal.

Studies: 

•Modulate “on” duration, “off” duration, and duty 
cycle of visual cortex activation.

•Neuronal and Hemodynamic Modeling
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Varying the Duty Cycle
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Simulation of Hemodynamic Mechanisms 
(Balloon model)
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Simulation of Neuronal Mechanisms
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1.Dynamics

Conclusion: 

•Nonlinearities are not fully explained by the Balloon model.

•“OFF” modulation sub-linearity suggests that blood volume 
change is not slower than flow change. 

Future: 

•Modulate neural activity or hemodynamic variables 
independently.

•Measure flow, volume to help constrain balloon model.

•Determine spatial and across-subject heterogeneity.



2. Fluctuations
Motivation: 

•Applications of connectivity mapping (autism, schizophrenia, 
Alzheimer’s, ADHD).

•Distinguish neuronal activity-related fluctuations from non-
neuronal physiological fluctuations.

-reduce false positives in resting state connectivity maps 
-increase functional contrast to noise for activation maps

•fMRI activation magnitude calibration using fluctuations rather 
than hypercapnic or breath-hold stress.

Studies:

•Time course of respiration volume per unit time (RVT)

•The Respiration Response Function (RRF)

•FMRI Calibration using RRF



Sources of time series fluctuations: 

•Blood, brain and CSF pulsation

•Vasomotion

•Breathing cycle (B0 shifts with lung expansion)

•Bulk motion

•Scanner instabilities

•Changes in blood CO2 (changes in breathing)

•Spontaneous neuronal activity



Estimating respiration volume changes
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Respiration induced signal changes
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RVT Correlation Maps &
Functional Connectivity Maps

Resting state correlation with
signal from posterior cingulate
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Respiration Changes vs. BOLD
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fMRI response to a single Deep Breath
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Respiration response function predicts BOLD signal associated with 
breathing changes better than activation response function.
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BOLD magnitude calibration
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2. Fluctuations
Conclusion: 

•RVT maps resemble connectivity maps.

•Constant breathing is effective in reducing fluctuations.

•Respiration Response Function is characterized.

•Breath hold, rate changes, depth changes, AND resting 
fluctuations can be used to calibrate BOLD magnitude. 

Future:

•Test calibration effectiveness.

•Compare ICA derived maps before and after RVT 
regression or breathing rate controls.



3. Experimental Design
Motivation: 

•Guides for individual subject scanning at the limits of 
detectability, resolution, available time, and subject 
performance.

Studies:

•Overt response timing

•Suggested resolution
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J. Bodurka, F. Ye, N Petridou, K. Murphy, P. A. Bandettini, NeuroImage, 34, 542-549 (2007) 

Finding the “suggested voxel volume”

Temporal Signal to Noise Ratio (TSNR) vs. Signal to Noise Ratio (SNR)

3T, birdcage: 2.5 mm3

3T, 16 channel: 1.8 mm3

7T, 16 channel: 1.4 mm3



3. Experimental Design

Conclusion: 

•Overt response paradigms are experimentally 
verified (blocked, 10 on/ 10 off is best). 

•The “suggested voxel volume” concept shows the 
importance of TSNR in gray matter rather than 
SNR.

Future:

•Implement rapid “suggested voxel volume” 
calculation at scanner, based on TSNR measure.



4. Pattern-Information Analysis

Motivation: 

•Classical fMRI analysis: 
 Is a region activated during a task?

•Pattern-information analysis: 
 Does a region carry a particular kind of 

information?

Study:

•Pattern-Information Mapping

•Dis-similarity matrix
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N. Kriegeskorte, R. Goebel, P. Bandettini, Proc. Nat'l. Acad. Sci. USA, 103, 3863-3868 (2006) 
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Visual Stimuli



Human IT
(1000 visually most responsive voxels)

Human Early Visual Cortex
(1057 visually most responsive voxels)
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fixation task

>600 cells

N. Kriegeskorte, et al (in review)



4. Pattern-Information Analysis

Conclusion: 

•Useful for mapping and comparing voxel wise 
patterns that may be missed with classical 
approaches.

Future:

•Spatial scale/distribution of most informative 
patterns with learning, categorization?

•Careful comparisons to mapping approaches.

•High resolution, high field.



5. Neuronal Current MRI

Motivation: 

•Direct fMRI of neuronal activity.

Studies:

•7T and 3T



Neuronal Cell Cultures at 7T

N. Petridou, D. Plenz, A. C. Silva, J. Bodurka, M. Loew, P. A. 
Bandettini, Proc. Nat'l. Acad. Sci. USA. 103, 16015-16020 (2006).
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5. Neuronal Current MRI

Conclusion: 

•MR phase and magnitude of cell cultures was modulated by 
TTX administration – suggestive of neuronal currents (phase 
>> magnitude).

Future:

•Detection in humans: pulse-sequence based neuronal 
frequency tuning, multivariate processing strategies, 
matched filters, high field.
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ON response amplitude: initial amp: 1.5 times steady state amp
Adaptation time constant:  1.5s
Refractory period:  5s
OFF response amplitude:  initial amp 0.5 times steady state amp
OFF response time constant: 0.5s

The initial overshoot amplitude and decay time were chosen to roughly match
the local field potential change measured in macaque visual cortex in
response to rotating checkerboard, as measured by Logothetis et al. (2001).

The refractory period was chosen to produce results somewhat consistent with
observed BOLD refractory period (Huettel et al., 2000). 


