

1. Dynamics

2.Fluctuations

3.Pattern Information

4.Neuronal Current MRI

The BOLD Signal

<u>Blood</u> Oxygenation Level Dependent (BOLD) signal changes

Brief "on" periods produce larger increases than expected.

R. M. Birn, Z. Saad, P. A. Bandettini, NeuroImage, 14: 817-826, (2001)

Brief "off" periods produce smaller decreases than expected.

R.M. Birn, P. A. Bandettini, NeuroImage, 27, 70-82 (2005)

MEG & fMRI Linearity Comparison

A. Tuan, R. M. Birn, P. A. Bandettini, G. M. Boynton, (submitted)

MEG Results

A. Tuan, R. M. Birn, P. A. Bandettini, G. M. Boynton, International Journal of Imaging Systems and Technology 18, 17-28 (2008)

Measured and Predicted BOLD responses

A. Tuan, R. M. Birn, P. A. Bandettini, G. M. Boynton, International Journal of Imaging Systems and Technology 18, 17-28 (2008) 1. Dynamics

2.Fluctuations

3.Pattern Information

4.Neuronal Current MRI

Resting State Correlations

Activation: correlation with reference function seed voxel in motor cortex

Rest:

B. Biswal et al., MRM, 34:537 (1995)

Sources of time series fluctuations:

- •Blood, brain and CSF pulsation
- Vasomotion
- •Breathing cycle (B_0 shifts with lung expansion)
- Bulk motion
- Scanner instabilities

•Changes in blood CO₂ (changes in breathing)

•Spontaneous neuronal activity

R.M. Birn, J. A. Diamond, M. A. Smith, P. A. Bandettini, NeuroImage, 31, 1536-1548

Estimating respiration volume changes

Respiration induced signal changes

R.M. Birn, J. A. Diamond, M. A. Smith, P. A. Bandettini, NeuroImage, 31, 1536-1548 (2006)

RVT Correlation Maps & Functional Connectivity Maps

Resting state correlation with signal from posterior cingulate

Resting state correlation with RVT signal

Group (n=10)

R.M. Birn, J. A. Diamond, M. A. Smith, P. A. Bandettini, *NeuroImage*, 31, 1536-1548 (2006)

Effect of Respiration Rate Consistency on Resting Correlation Maps

Spontaneously Varying Respiration Rate

Constant Respiration Rate

Group (n=10)

R.M. Birn, J. A. Diamond, M. A. Smith, P. A. Bandettini, *NeuroImage*, 31, 1536-1548 (2006)

... Tangent on Signal to Noise

Temporal Signal to Noise Ratio (TSNR) vs. Signal to Noise Ratio (SNR)

TSNR

J. Bodurka, F. Ye, N Petridou, K. Murphy, P. A. Bandettini, NeuroImage, 34, 542-549 (2007)

Sensitivity, Scan Time, and Temporal Signal to Noise

K. Murphy, J. Bodurka, P. A. Bandettini, NeuroImage, 34, 565-574 (2007)

Neural Correlates of Visual Working Memory: fMRI Amplitude Predicts Task Performance

Luiz Pessoa,¹ Eva Gutierrez, Peter A. Bandettini, and Leslie G. Ungerleider Laboratory of Brain and Cognition National Institute of Mental Health National Institutes of Health Bethesda, Maryland 20892

Multi-sensory integration

M.S. Beauchamp et al.,

1. Dynamics

2.Fluctuations

3.Pattern Information

4.Neuronal Current MRI

N. Kriegeskorte, R. Goebel, P. Bandettini, Proc. Nat'l. Acad. Sci. USA, 103, 3863-3868 (2006)

Visual Stimuli

Monkey-Human Comparison Procedure

Human

- fMRI in four subjects (repeated sessions, >12 runs per subject)
- "quick" event-related design (stimulus duration: 300ms, stimulus onset asynchrony: 4s)
- fixation task

 (with discrimination of fixation-point color changes)
- occipitotemporal measurement slab (5-cm thick)
- small voxels (1.95×1.95×2mm³)
- 3T magnet, 16-channel coil (SENSE, acc. fac. 2)

Monkey (Kiani et al. 2007)

- single-cell recordings in two monkeys
- rapid serial presentation (stimulus duration: 105ms)
- fixation task
- electrodes in anterior IT (left in monkey 1, right in monkey 2)
- 674 cells total
- windowed spike count (140-ms window starting 71ms after stimulus onset)

1. Dynamics

2.Fluctuations

3.Pattern Information

4.Neuronal Current MRI

Surface Fields

100 fT at on the scalp

J.P. Wikswo Jr et al. *J Clin Neuronphy* 8(2): 170–188, 1991

Surface Field Distribution Across Spatial Scales

Adapted from: J.P. Wikswo Jr et al. J Clin Neurophy 8(2): 170-188, 1991

Magnetic field associated with a bundle of dendrites

Because B_{MEG} =100fT is measured by MEG on the scalp

at least 50,000 neurons (0.002 fT (per dendrite) \times 50,000 = 100 fT), must coherently act to generate such field. These bundles of neurons produce, within a typical voxel, 1 mm \times 1 mm, a field of order:

$$B_{MRI} = B_{MEG} \left(\frac{r_{MEG}}{r_{MRI}}\right)^2 = B_{MEG} \left(\frac{4 \ cm}{0.1 \ cm}\right)^2 = 1600 \ B_{MEG} \quad B_{MRI} \approx 0.2 \ m_{MRI}^2 = 1600 \ B_{MRI}^2 = 1600 \ B_{MRI}^2$$

 $\Delta \varphi \cong 20^{\circ}$

Measurement

Single shot GE EPI

Correlation image

J. Bodurka, P. A. Bandettini. Magn. Reson. Med. 47: 1052-1058, (2002).

in vitro model

Organotypic (*no blood supply or hemoglobin traces*) sections of newborn-rat somato-sensory Cortex &Basal Ganglia

- \bullet Size: in-plane:~1-2mm², thickness: 60-100 μm
- Neuronal Population: 10,000-100,000
- Spontaneous synchronized activity < 2Hz
- Epileptiform activity
- Spontaneous beta freq. activity (20-30Hz)
- Network Activity Range: ~ $0.5-15\mu V$

3 Tesla data

FSE image

0.15Hz map

<u>Active</u> condition: black line <u>Inactive</u> condition: red line

A: 0.15 Hz activity, on/off frequency

- **B**: activity
- C: scanner noise (cooling-pump)

7 Tesla data

Power decrease between PRE Decrease between PRE & TTX & TTX EEG : ~ 81% MR phase: ~ 70% MR magnitude: ~ 8%

N. Petridou, D. Plenz, A. C. Silva, J. Bodurka, M. Loew, P. A. Bandettini, *Proc. Nat'l. Acad. Sci. USA*. 103, 16015-16020 (2006).