The Spatial, Temporal and Interpretive Limits of Functional MRI

Peter A. Bandettini, Ph.D

Unit on Functional Imaging Methods Laboratory of Brain and Cognition National Institute of Mental Health

Categories of Questions Asked with fMRI

Where?

When?

How much?

How to get the brain to do what we want it to do in the context of an fMRI experiment? (*limitations*: time, motion, acoustic noise....)

A Primary Challenge:

...to make progressively more precise inferences using fMRI without making too many assumptions about non-neuronal physiologic factors.

Contrast in Functional MRI

Blood Volume

 Contrast agent injection and time series collection of T2* or T2 - weighted images

• BOLD

Time series collection of T2* or T2 - weighted images

Perfusion

- T1 weighting
- Arterial spin labeling

Photic Stimulation

MRI Image showing activation of the Visual Cortex

From Belliveau, et al. Science Nov 1991

MSC - perfusion

Susceptibility-Induced Field Distortion in the Vicinity of a Microvessel \perp to B₀.

BOLD Contrast in the Detection of Neuronal Activity

Perfusion / Flow Imaging

EPISTAR

FAIR

TI (ms)FAIREPISTAR200

Volume

BOLD

unique informationbaseline information

• multislice trivial

- invasive
- low C / N for func.

• highest C / N

- easy to implement
- multislice trivial
- non invasive
- highest temp. res.

complicated signal no baseline info.

Perfusion

- unique information
- control over ves. size
- baseline information
- non invasive

- multislice non trivial
- lower temp. res.
- low C / N

Physiologic Factors

Physiologic Factors that Influence BOLD Contrast

> Coupling: Flow & CMRO₂

- Blood oxygenation
- Blood volume
- Blood pressure
- Hematocrit
- Vessel size

Where and When?

The resolution is determined by the cerebral hemodynamics.

Make several assumptions.

Single Shot Imaging

EPI Readout Window

 ≈ 20 to 40 ms

Multishot Imaging

Window 2

EPI

Partial k-space imaging

Single - Shot EPI at 3T: Half NEX, 256 x 256, 16 cm FOV

Single - Shot EPI at 3T: Half NEX 256 x 256, 16 cm FOV

2.5 mm² 1.67 mm² 1.25 mm² 0.83 mm² 0.62 mm²

Fractional Signal Change

2.5 mm² 1

1.25 mm²

0.83 mm² 0.62 mm²

Pulse sequence based methods for increasing spatial and temporal resolution

- Spin-echo
- ASL
- Diffusion weighting
- Threshold based on magnitude

Fractional Signal Change

2.5 mm² 1

1.25 mm²

0.83 mm² 0.62 mm²

Spin echo vs. Gradient echo

GE TE = 30 ms

SE TE = 110 ms

average $\Delta R2^* / \Delta R2 \approx 3$ to 4

Spin-Echo TE = 105 ms TR = ∞

Gradient-Echo TE = 50 ms

Gradient-Echo functional TE = 50 ms

Spin-Echo functional TE = 105 ms

no diffusion weighting

diffusion weighting

Summary of Diffusion-Weighted fMRI Data

Perfusion

Activation

Anatomy

BOLD

Perfusion

Simultaneous Flow and BOLD

Simultaneous BOLD and Perfusion

Perfusion

Simultaneous BOLD and Perfusion

perfusion

BOLD

Angiogram Perfusion BOLD

Spatial Normalization

Hypercapnia

T1 - weighted

T2* weighted

T1 and T2* weighted

Vascular Sensitization

Problems with pulse sequence - based methods for increasing resolution

- Spin-echo (sensitivity, specificity)
- Arterial spin-labeling (sensitivity, time, range)
- Diffusion weighting (sensitivity, specificity)
- Threshold based on magnitude (sensitivity, specificity)

Anatomical

)

Finger Movement

5% CO2

12% 02

Resting State Blood Volume Weighting

Hoge et al

Hoge et al

Mapping CMRO₂ using CO₂ Calibration

Hoge et al

Types of Temporal Resolution

- 1. Maximum on-off switching rate.
- 2. Minimum detectable activation duration.
- 3. Minimum detectable difference in activation duration or onset in same region.
- 4. Minimum detectable activation interval across separate brain regions.
- 5. Maximum image acquisition rate.

MRI Signal

$S = k t^{8.6} e^{-t/0.547}$

Cohen, Neuroimage 6, 93-103 (1997)

Time Course Comparison Across Brain Regions 0.75 0.50 0.25 0

TIME (sec)

12

13

Latency

Magnitude

Temporal Normalization

Physiologic Factors

Regions of Interest Used for Hemi-Field Experiment

Right Hemisphere

Left Hemisphere

Hemi-field with 500 msec asynchrony

Average of 6 runs Standard Deviations Shown

How Much?

Central Issue:

Spatial and temporal neuronal firing integration to create an fMRI signal change.

- is the hemodynamic response a linear system? -what is the dynamic range?

Auditory Cortex

Motor Cortex

DeYoe et al.

Stimululs - Duration Dependent Deviation from Linearity of the fMRI Response (Hemodynamic or Neuronal?)

Spatial Distribution of the Hemodynamic Response Linearity

- 1. Block Design
- 2. Frequency Encoding
- 3. Phase Encoding
- 4. Single Event
- 5. Orthogonal Block Design
- 6. Free behavior Design.

Ultimate Limits?

Spatial: 0.5 mm Temporal: 100 ms Interpretability...too early to tell, but hopeful

Neuronal Input Strategies

Peter A. Bandettini, Ph.D

Unit on Functional Imaging Methods Laboratory of Brain and Cognition National Institute of Mental Health

How to get the brain to do what we want it to do in the context of an fMRI experiment?

- 1. Block Design
- 2. Frequency Encoding
- 3. Phase Encoding
- 4. Single Event
- 5. Orthogonal Block Design
- 6. Free behavior Design.

- 1. Block Design
- 2. Frequency Encoding
- 3. Phase Encoding
- 4. Single Event
- 5. Orthogonal Block Design
- 6. Free behavior Design.

- 1. Block Design
- 2. Frequency Encoding
- 3. Phase Encoding
- 4. Single Event
- 5. Orthogonal Block Design
- 6. Free behavior Design.

spectral density

c.c. > 0.5 with spectra

- 1. Block Design
- 2. Frequency Encoding
- 3. Phase Encoding
- 4. Single Event
- 5. Orthogonal Block Design
- 6. Free behavior Design.

- 1. Block Design
- 2. Frequency Encoding
- 3. Phase Encoding
- 4. Single Event
- 5. Orthogonal Block Design
- 6. Free behavior Design.

"Single-Trial" Response Across an Averaged Data Set

Single-trial (brief stimulus)

Motion-Decoupled fMRI: Functional MRI during of overt word production

"block-trial" paradigm

Motion induced signal changes resemble functional (BOLD) signal changes

"single-trial" paradigm

Motion induced and BOLD signal changes are separated in time

R.M. Birn, et al.

Overt Word Production

Tongue Movement

Jaw Clenching

Event-Related fMRI Questions:

1. What is the optimal ISI?

2. How does functional contrast compare with "blocked" timing?

(Is the hemodynamic response a linear system?)

Contrast in Event Related fMRI

Dependency on:

Inter-stimulus Interval (ISI)Stimulus Duration (SD)

Comparison with:

Blocked strategies
Synthesized responses created using convolution

Issues:

1. ISI Issue

Shorter ISI provides more trials per unit time.

•Shorter ISI causes overlap in hemodynamic response, reducing dynamic range.

2. Contrast Issue

 Does signal behave like a linear system with brief SD?

Experimental Methods

•Two imaging planes containing motor and visual cortex.

- •EPI, 3.75 x 3.75 x 7 mm, TE = 40 ms, TR = 1 sec.
- •Time series duration = 360 images (6 minutes).
- •10 series compared: Single Trial: SD = 2, ISI = 24, 20, 16, 12, 10, 8, 6, 4, 2. Blocked: SD = 20, ISI = 20.
- •Subjects instructed to tap fingers when GRASS goggles were on.

10, 2

12, 2

20, 20

ISI, SD

Visual Cortex

ISI, SD

8, 2

6, 2

4, 2

2, 2

10, 2

12, 2

20, 20

ISI, SD

Motor Cortex

8, 2

ISI, SD

6, 2

4, 2

2, 2

15308

Motor Cortex

Visual Cortex

Motor Cortex

24 20 10

Visual Cortex

S

Contrast to Noise Images (ISI, SD)

Motor

Visual

Relative differences in activation intensities may reflect spatial differences in hemodynamic responsivity. (draining veins vs. capillaries).

2, 2

20, 20

Contrast

ISI (sec)

(Block design = 1)

Response Synthesis

Convolution

Contrast

ISI (sec)

(Block design = 1)

Conclusions

• Experimental:

For SD = 2 sec, Optimal ISI \approx 12 sec. Contrast = 0.65 x blocked contrast

Simulation using convolution:

For SD = 2 sec, OptimIal ISI \approx 10 sec. Contrast = 0.35 x blocked contrast

Possible reasons for greater than linear response.

Neuronal:

"Bursting" during first 100 ms.

Hemodynamic/Metabolic:

 Δ BV and/or Δ CMRO₂ time constants slower than Δ Flow during initial seconds of activation.

Possible implications for interpretation of event-related data using short, randomized ISI w/ deconvolution. Dale AM, Buckner RL (1997), Human Brain Mapping, 5, 329-340.

BOLD response - constant ISI

Tasks can be performed faster by varying the ISI

Response to Averaged Single Trials: Subject JM

Response to Averaged Double Trials: Subject JM

Response to Averaged Double Trials: Subject JM

0000

13 14 15 18 17 18 19

Separation of Responses: Subject JM

You can go even faster with the assumption of linearity...

Response to Multiple Trials: Subject RW

Rapid-trial Visual Activation Paradigm for Selective Averaging

Trials randomly presented 2 sec apart

If ISI is randomized, and if ON / OFF distribution is 50%, the optimal average ISI is as short as you can make it.

BOLD response - varying ISI

BOLD response

Stimulus

Event-related constant ISI

ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ

Event-related random ISI

Blocked trial

fCNR vs. Average ISI

Conclusions

The fMRI signal is able to be **calibrated**. Physiologic, neuronal, and pulse sequence calibration techniques are just starting to develop to complement pulse sequence advances.

-spatial resolution < 0.5 mm -temporal resolution < 100 ms -information content: quantitative flow, CMRO2...

A large amount of additional information exists in the fMRI signal (i.e. fluctuations..).

To aid the development of calibration, more work needs to be done using extremely well understood neuronal activation (across several temporal, spatial, and intensity scales) to better characterize of the fMRI signal.

Neuronal Activation Input Strategies

- 1. Block Design
- 2. Frequency Encoding
- 3. Phase Encoding
- 4. Single Event
- 5. Orthogonal Block Design
- 6. Free behavior Design.

Neuronal Activation Input Strategies

- 1. Block Design
- 2. Frequency Encoding
- 3. Phase Encoding
- 4. Single Event
- 5. Orthogonal Block Design
- 6. Free behavior Design

Free behavior Design:

Use the following as "reference functions"

- Skin Conductance
 EEG
- Eye tracking
- Task performance
- Heart rate
- Respiration rate

	Pulse sequences	Processing	Paradigms
Basic		Para	metric manipulation
	Shimming Contrast cor	mparisons Phase a	and freq. encoding
	RF coil arrays	Orthogonal	multi-task encoding
	Physiologic	fluctuations Physio	logic manipulations
	Embedded contrast		
	Motion correction Event - related fMRI		
	Distortion / dropout correction		
	Real time	e fMRI	
	Perfusion quantitation	Effective connection	ctivity mapping
	<- Multi - modal integration ->		
	<- Sub - second resolution ->		
	<- Sub - millimeter resolution ->		
Advance	<- CMR	O ₂ mapping ->	

1992-1999

1991-1992

