Linearity of the BOLD Response

Peter A. Bandettini Rasmus Birn Ziad Saad Dan Kelley

Unit on Functional Imaging Methods Laboratory of Brain and Cognition, National Institute of Mental health, NIH

Hemodynamic Transfer Function

Auditory Cortex

Motor Cortex

Savoy et al.

Methods

Observed Responses

BOLD response is nonlinear

Short duration stimuli produce larger responses than expected

(Block design = 1)

Contrast to Noise Images (ISI, SD)

Source of the Nonlinearity

Neuronal

Hemodynamic

Miller et al. 1998 – Flow is linear, BOLD is nonlinear *Friston et al.* 2000 – hemodynamics <u>can</u> explain nonlinearity

If nonlinearity is hemodynamic in origin, a measure of this nonlinearity will reflect any spatial variation of the vasculature

Compute nonlinearity (for each voxel)

Amplitude of Response

Fit ideal (linear) to response

Area under response / Stimulus Duration

Output Area / Input Area

Nonlinearity

Motor

Results – visual task

Nonlinearity

Magnitude

Latency

Results – motor task

Nonlinearity

Magnitude

Latency

Results – visual task

Results – motor task

Reproducibility

Visual task

Experiment 1

Experiment 2

Different stimulus "ON" periods

Brief stimuli produce larger responses than expected

Different stimulus "ON" periods

Brief stimulus OFF periods produce smaller decreases than expected

Varying "ON" and "OFF" periods

Rapid event-related design with varying ISI

MM_MM_M_M_M_M_M_M_M_M_25% ON

MWWM_WWM_MWM_MWM_MWM_MM_50% ON

75% ON

Varying "ON" and "OFF" periods

Conclusions

- For brief stimulus "ON" periods, signal increases are larger than expected. These nonlinearities show considerable yet reproducible spatial heterogeneity.
- For brief stimulus "OFF" periods, signal decreases are smaller than expected
- For varying "ON" and "OFF" periods, deconvolved impulse response depends on fraction of time in "ON" state.

Sources of this Nonlinearity

Neuronal

- Hemodynamic
 - Oxygen extraction
 Blood volume dynamics

BOLD Curves

- A Linear and Nonlinear "Balloon" BOLD Curves for Varying SD 20,2,1,0.5, 0.25 sec
- B Balloon Curves, SD = 20 sec: One parameter is varied at a time. When not varied they are set equal to $V_0 = 0.03$, $E_0 = 0.3$, and Gam = 2.6
- C Balloon Curves, SD = 2 sec: One parameter is varied at a time. When not varied they are set equal to $V_0 = 0.03$, $E_0 = 0.3$, and Gam = 2.6

Balloon Model Parameters

For a given flow of blood into the venous compartment, the three Balloon parameters which control the hemodynamic contribution to the BOLD signal are thought to be E_0 , V_0 , and Gam.

 E_0 represents the fraction of total hemoglobin not bound to O_2 ;

v(t) is the fraction of voxel volume filled with blood during the active state normalized to that at rest, V_0 ;

 τ_{o} is the mean venous transit time of blood in the venous compartment and equals V₀ / FlowOut(0);

Gam is the exponent defining the relationship between venous outflow and fractional blood volume;

q(t) is the total voxel content of dHB during the active state normalized to that at rest;

VISCOS is a viscosity term that varies between viscup, during balloon inflation, and viscdown, during balloon deflation.

On a voxelwise basis, the stimulus waveform was smoothed (WAVrisetime), scaled (FLINamp), and phase shifted (FLINdelay) in order to generate an optimally fitting curve, ShiftedFlowIn(t), representing blood flow into the venous compartment.

Nonlinearity = Area Under f(SD) greater than 1

Figure 2: Balloon Curves at different Tesla, SD = 20 sec. $V_0 = 0.03$, $E_0 = 0.3$, and Gam = 2.6

Conclusions

When varied independently, E_0 , V_0 , and Gam each affect the BOLD signal in different ways. The interaction of these parameters produces BOLD curves that are nonlinear when compared to the linear results using the same SD.

For Gam values between 0 and 2, in which venous outflow is not laminar, small increases in Gam reduce nonlinearity (NL).

Nonlinearity is a function of several parameters, whose relative contributions to NL are determined by the value of each parameter.

For Gam values between 2.1 to 6.4 and with other parameters in physiological range, NL values ranged from 6.01 to 7.53.

By limiting the NL range to the range of NL obtained experimentally (NL between 5 and 10), the balloon model can be further constrained in our attempt to extract physiologic information from the BOLD response in humans. Further analysis is necessary to determine how varying the viscoelasticity of the venous compartment affects NL.

Balloon Fit to BOLD Signal

FlowOut(t)

v(t)

q(t)

Exfrac(t)

CMRO₂

FlowOut(t) versus v(t)

siologic Range
0.2 to 0.4
0.02 to 0.05
2.1 to 6.4

Balloon Model Parameter Estimation

	A1	A2	Mean	StdDev	%StDev/Mean	B1	B2	Mean	StdDev	%StDev/Mean
constant	726.422	719.873	723.148	4.631	0.640	687.650	695.451	691.551	5.516	0.798
linear	-0.008	0.029	0.011	0.026	241.779	0.023	0.005	0.014	0.013	94.457
FLINamp	0.598	0.491	0.545	0.076	13.938	0.582	0.603	0.592	0.015	2.498
FLINdelay	-0.794	-0.808	-0.801	0.010	-1.227	0.662	0.545	0.604	0.083	13.748
Vo	0.051	0.049	0.050	0.002	3.825	0.034	0.041	0.037	0.004	12.007
Eo	0.330	0.295	0.312	0.025	7.982	0.436	0.393	0.415	0.030	7.288
Gam	4.151	3.723	3.937	0.303	7.687	3.742	3.495	3.618	0.175	4.830
WAVrisetime	2.572	2.788	2.680	0.153	5.706	2.431	2.625	2.528	0.138	5.445
viscup	3.780	3.206	3.493	0.406	11.620	8.529	7.115	7.822	1.000	12.782
viscdown	8.870	11.086	9.978	1.567	15.704	9.945	10.250	10.098	0.215	2.133

Magnitudes of Averaged Balloon Model Fit

Raw Experimental Data versus the Optimal Balloon Model Fit

The magnitudes for different stumuli (A and B), averaged across two runs, are plotted for epochs (16, 4, 2, 1 sec) within an averaged run and for all epochs in the averaged run).

Conclusions

Balloon model hemodynamics do not fully account for human BOLD signal NL.

Within a run for a given stimulus, epochs of longer stimulus duration are better characterized by the Balloon model than shorter stimulus durations.

As epoch durations become briefer, the Balloon model fits become more linear relative to experimental data.