
Joshua Faskowitz1, Javier Gonzalez-Castillo1, 
Daniel A. Handwerker1, Peter A. Bandettini1,2

On the features of spiking connectivity

1 Section on Functional Imaging Methods, 
2 Functional Magnetic Resonance Imaging Core Facility, 

National Institute of Mental Health, Bethesda, USA

Introduction
• The concept of functional connectivity is pervasive in modern fMRI research

▪ Static functional correlation reveals what regions similarly fluctuate, i.e. highly correlated areas
▪ Measuring dynamic similarities reveals how regions fluctuate over time, potentially falling in and out 

of synchrony on the scale of minutes, or even seconds
◦ A long-standing finding in fMRI connectivity analysis is that punctuated moments in time contribute 

disproportionately to time-averaged similarity1,2,7,9,12,14

• Edge time series3,14 render connectivity dynamics at the temporal resolution of the input time series 
▪ Using edge time series, we can extract features of connectivity dynamics, such as high-amplitude 

events and windows of variable fluctuation patterns. Such features have the potential to further our 
understanding of brain communication, as observed using fMRI.
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For each edge ts,
Σ / (N) = 

Pearson correlation 
coefficient

• Edge time series constructed from the element-wise products of the 
z-scored time series

◦ Average edge time series = correlation coefficient
• Using this formulation of dynamic connectivity data, we can search for 

new features to differentiate different similarity patterns
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Methods
• HCP

◦ Human Connectome Project resting-state data from 50 research subjects (0.72 TR, 1200 TRs, ~15 mins)
◦ Minimally pre-processed: motion, distortion, high-pass filtering
◦ Nuisance regressed using ICA FIX, plus average CSF and WM traces. Time series constructed by averaging 

vertex data within 400 node of Schaefer parcellation10, at each time point, using Connectome Workbench
• NIH Multi-task

◦ 7T data collected at NIH4 from 20 research (1.5 TR, 1017 TRs, ~25 mins) 
◦ Preprocessed using AFNI including despiking, physiological noise correction (RETROICOR, respiration, and 

heart rate regressors), motion correction, motion regression, and ANATICOR
◦ Subjects underwent 4 tasks (rest, memory, video, math) of 180 sec, with 12 sec instruction periods
◦ Time series constructed using Yan homotopic parcellation13, and filtered 0.006-0.18 Hz6

• Edge time series
▪ Computed via the element-wise product of two z-scored time series; sum of which is correlation
▪ High-amplitude events (i.e. spikes) defined as contiguous instances edge time series exceed threshold of 2
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Figure 1. a) Visualization of seed node and target nodes in DMN and somatomotor systems. b) Visu-
alization of seed node time series (red) and associated edge time series (blue). c) Raster of spikes 
from 454 emanating edges of seed node. d) “High”-connectivity edge time series, with spike count 
and number of supra-threshold points plotted to the right; corresponding visualization for a “low”-con-
nectivity edge depicted in e. f) Cortical surface map of correlation and spike counts, which have a 
high spatial similarity, shown in scatter plot of g, top; the similarity between correlation holds for group 
avg. data, bottom, as expected based on canonical findings on point processes for fMRI2,14
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• Connectivity information 
can be recapitulated 
using counts of high-am-
plitude edge time series 
spikes

• Results are robust to ar-
bitrary changes in spike 
threshold
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Figure 2. a) Group averaged edge spike count ma-
trices (top), separated by spike duration into short ( 
0.72-2.88 sec), medium (2.88-5.76 sec) and long (> 
5.76 sec) supra threshold activity; information is 
groups by functional system. b) Short and long spike 
matrices were summed, z-scored, and plotted to 
illustrate the short vs. long spiking propensity for 
each node, which is also visualized on the surface in 
c; points are colored by the distance normal to the  
identity line. d) This distance is seemingly orthogo-
nal to the 1st gradient of functional connectivity8, de-
fined as the principal axis of variation of the function-
al connectivity matrix. 
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Figure 3. a) Across all edges of 400-node data, positive relationship between Pearson correlation of edge, and the spike length variability (the 
variance of spike lengths over the course of resting state session); for each 2% bin of correlation values, we identify edges that have relatively 
high or low variability (z-score color map) b) Top and bottom 10% z-scored valued edges, mapped to node surface; these maps show which 
nodes have edges (illustrated as gray ellipses to the right) with consistent length emanating edges (b, right) versus variable length (b, left) 
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etsvar: ets variance within 
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magnitude of absolute 
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Data lowpass filtered to 
exclude potentially spuri-
ous oscillations slower 
than 45 seconds.

Procedure to compute precision and recall
Take time by time correlation matrix and threshold at 
x percentage, retaining all correlation values above 
x, to create a binary matrix. Compare this binary 
matrix to expected task-structure matrix based on 
experimental design, recording hits and misses as if 
it were a classification task. The design matrix is 

comprised of on-diagonal blocks of 180 sec. for 
each task and off-diagonal blocks correspond-

ing to repeat task blocks.  Iterate over values 
of x, thereby modulating the classification 

results across range of threshold 
percentiles.

Figure 4. a) Using multi-task fMRI data, we can ask if there are dynamic connectivity-based features that correspond to different task demands or states; further-
more, could these features identify not only task blocks, but repeat presentation of tasks (off-diagonal red squares in panel b separated in time. Example time 
series shown on left, and their time-varying features on the right. b) Time-by-time correlation matrices constructed from different representations of connectivity 
dynamics; ideal data perfectly capturing task structure would fill on-diagonal blocks and off-diagonal blocks (see task design matrix, orange); data is median 
thresholded and colored by rank to facilitate comparison. c) Precision-recall curves generated by thresholding the dynamic connectivity matrices for each 
method, and treating the comparison of thresholded data to the design matrix as classification task
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Discussion
• By virtue of unwrapping correlation into its moment-to-moment contributions, edge time series reveal the manners in which correla-

tion values are realized. Although it is a mathematical necessity that the expected value (i.e., average) of edge time series equals  
correlation, here we demonstrate how there are variations in how correlations evolve over time.

◦ In Figure 1, we illustrated a longstanding finding in the field1,2,7,9,12,14, showing how connectivity can be estimated by simply count-
ing punctuated high amplitude events (i.e., spikes) 11,14

◦ Connectivity spikes can be sorted by duration (Figure 2), which could reveal how different canonical systems correlate via pat-
terns with different time scales; system to system correlation spike activity differs based on spike length sorting. 

◦ There is a strong relationship between correlation magnitude and spike length variability (Figure 3), but using z-score normaliza-
tion we can ask, given a certain correlation magnitude, how variable is an edge; we can then evaluate which nodes have more 
heterogeneous versus uniform spike patterns emanating from them.

◦ Since edge time series allows access to moment-by-moment connectivity information, we can extract connectivity features to 
differentiate different task states4 (Figure 4); using edge time series to read variability information, such as the magnitude of mo-
ment-by-moment changes5, has the potential to better correspond with task structure.

• An outstanding challenge is to ground spiking and edge time series temporal patterns with known functional neuroanatomy, and to 
use these patterns to establish how different cognitive systems might communicate during tasks and rest. In pursuit of this work, em-
phasis needs to be placed on separating real dynamic patterns from noise or statistically-based patterns.
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Checkout profile github.com/faskowit/ for example code in MATLAB


