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Multi-echo fMRI is used to empirically 
identify and remove non-T2

* weighted 
fluctuations from fMRI data. One common 
method MEICA[1], uses ICA to break data 
into components. Components that are 
classified as insufficiently T2

* weighted are 
removed from denoised time series.  This 
method works well, but there is no reason to 
assume that ICA inherantly parses data into 
distince T2

* and non-T2
* components. Thus 

every retained and removed component is a 
combination of  potentially neural and 
non-neural fluctuations.

We test whether it is possible to create 
components with better separation of  T2

* 
information to improve the fMRI denoising 
process. 

DISCUSSION

Two volunteers participated in the same 340s block design task 
103 times each over 9 scanning sessions. The massive 
repetitions make it possible to estimate distributions of  effect 
sizes across runs

Scanning Parameters
GE 3T MR-750 MRI scanner, GE 32 channel head coil.
GRE EPI, TR=2s, TE=15.4, 29.7, & 44.0ms, FA=75o
33 oblique slices,  3.5mm3 voxels, 0mm gap, 64x64 grid, ASSET=2. 
1mm3 MPRAGE T1 weighted and proton density weighted scans were 
collected during each session for registration.

5 cycles of  a 20s flickering checkerboard followed by 40s of  
fixation. A letter or number appeared for 0.4s 4 times in each 
stimulus block. The volunteer would press a button 
indicating if  a letter or number appeared. Same task as: [3]
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For signal fluctuations in each component:
Kappa is a measure of  T2

* (including BOLD)
Rho is a measure if  S0 (e.g. head motion, signal drift)
A good explanation, with equations, is in [2].
For each voxel in each component, calculate an F statistic across the echo time series 
for the goodness of  fit to an MRI model of  T2

* or S0. Kappa and Rho are the  weighted 
sum of  these voxelwise estimates weighted by the contribution of  each voxel to the 
component

Component Selection: Sort the Kappa & Rho values by magnitude and find an 
inflection point or elbow, where the slope changes. Remove components with a 
Kappa lower than the elbow or a Rho higher than the elbow. (The same elbow selec-
tion method and no other criteria where used to select components from the ICA and 
Tuned analyses.

Tuning Cost Function: Calculate the mean Kappa & Rho across components for 
each run. The κ ρ difference is: κρDiff= sum(κ-ρ*mean(κ)/mean(ρ)) Like z-scoring, 
this makes sure a relative change in κ or ρ in a component is treated similarly by the 
cost function
ICAκρDiff  =  2-(abs(κρDiff)/max(κρDiff)) for the original ICA κ and ρ values
The cost function is the sum of  abs(κρDiff) for each permutation * ICAκρDiff
The scaling by ICAκρDiff  means that the cost changes more for values with mixed κ 
and ρ weighting that shift towards being more κ or more ρ.
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We demonstrate that ICA is not the optimal way to 
separate data by T2

* weighting. 

The presented tuning process resulted in accepted 
components whose total variance was more 
kappa-weighted and rejected components whose total 

variance was more rho-weighted

This opens up the possibility to more selectively remove 
non-BOLD-weighted noise from multi-echo fMRI data

The Contrast-to-Noise Ratio in two task-specific ROIs 
improved with ICA Denoising, but the added tuning did 

not improve CNR

Data

Preprocessing
Data were processed  using AFNI and Python (for the ME-ICA denoising 
code) in each volunteer’s native space. The data were despiked, slice time 
corrected and motion corrected.  The first scan of  every session was 
aligned to the anatomical scan from the same day and then the first day’s 
anatomical scan. Alignment and motion correction parameters were 
calculated on the middle echo time series and applied to all 3 echoes as a 
single transform matrix.

Contrast-to-Noise Ratio Does Not Improve with Component Tuning

Kappa and Rho Values are more separated across components after Tuning

There is more Kappa selective variance in the accepted components 
and more Rho selective variance in the rejected components after tuning
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Magnitude maps and time series from an example component
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The Tuning process successfully increases separation of  kappa & value within components. The diagonal line is where the kappa and rho value would be 
most mixed within components. After tuning, the components that are closest to this line are farther away. Not every component gets better differentiated

This is an example component from the run with the greatest kappa vs rho score improvement (circled in 
the above figure). This component is weighted towards the voxels in primary visual cortex and the time 
series shows the block-design task response. Note that, while the average of  all components have better 
kappa rho differentation, the kappa score decreased with tuning for this component 
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The tuning process results in runs where more of  the total variance remains 
in the denoised data. While this is not inherantly good or bad, it’s noteworthy 
that the distribution is also narrower after tuning. The narrowing remains 
even when selecting the same components as used in the original ICA. 
Tuning may increase the consistency of  the result of  the denoising process.
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These values are the κρDiff  for each component, multipled by the variance for the component and summed across all accepted or rejected components. The more positive a value, the more 
kappa-weighted variance there is in the components and negative values are more rho weighted. Each dot is a run. The black line has a slope of  1 (original=tuned). After tuning, nearly every 
run has more kappa-weighted variance in the accepted components and more rho-weighted variance in the rejected components.

1 2 3 4 5 6 7 8 9
CNR Optimally Combined

1

2

3

4

5

6

7

8

9

C
N

R
 D

en
oi

se
d

Calcarine Sulcus

Orig ICA
Tuned

1 2 3 4 5
CNR Optimally Combined

1

2

3

4

5

C
N

R
 D

en
oi

se
d

Lateral Geniculate Nucleaus

0 2 4 6 8 10
CNR

0.00

0.05

0.10

0.15

0.20

0.25
Optimally Combined
Original ICA
Tuned
Tuned with 
ICA-selected components

−1 0 1 2 3 4 5 6
CNR

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Orig ICA
Tuned

K
er

ne
l D

en
sit

y 
Es

tim
at

e(
ac

ro
ss

 ru
ns

)

K
er

ne
l D

en
sit

y 
Es

tim
at

e(
ac

ro
ss

 ru
ns

)

Calcarine Sulcus Lateral Geniculate Nucleaus

Scatter plots show the CNR for the optimally 
combined data vs the denoise time series for two 
regions-of-interest, the Calcarine sulcus and the 
LGN. Each dot is a run and the black line marks no 
change in CNR. For both ROIs, the CNR increases 
from optimally combined to ICA-based denoising. 
For the Calcarine Sulcus, which usualy has a large 
CNR for this task, the tuned denoised time series 
showa little improvement over Optimally Combined 
in CNR. For the LGN, the tuned time series is 
similar, but not better than the original 
ICA-desnoised time series.

These show the distributions of  the CNR values 
across runs for both ROIs. The dashed vertical lines  
are the median CNR for each processing method. 
The CNR distribution for the original ICA denoised 
time series are shifted larger than the optimally 
combined data, but the tuned denoised time series 
have slightly worse or equal CNR to the ICA time 
series. Using the tuned components, but rejecting 
only the components selected by the original ICA 
doesn’t shift these distributions.

OPEN QUESTIONS
Is there a different cost function for tuning 
that will improve CNR by better balancing 
the kappa rho difference improvements 

across all components?

Are kappa & rho nonideal proxies for T2
* 

and  S0 weighting?

Does CNR improve with tuning in other 
brain areas with lower initial CNR?

Can other methods, like IVA, more 
efficiently estimate kappa vs rho 

differentiated components?
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