Integrating Multimodal Neuroimaging Features to Predict Working Memory and Psychiatric Disability

#1124

Catherine R. Walsh^{1,2}, Jean-Baptiste Pochon³, Agatha Lenartowicz³, Sandra K. Loo³, Catherine A. Sugar³, Carrie E. Bearden³, Robert M. Bilder³, Jesse Rissman^{1,3}

¹Department of Psychology, University of California, Los Angeles ²National institute of Mental Health, NIH ³Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles

Background

- Working memory capacity (WMC) is positively correlated with higher order cognitive ability^{1,2} and negatively correlated with psychiatric disability^{3,4}
- A variety of structural and functional neuroimaging measures have been shown to correlate with individual differences in WMC
- •Most studies that investigate WMC only look at one type of neuroimaging measure, or within one psychiatric population
- Using a large sample (N=169) and an ensemble machine learning framework aimed at harnessing the informativeness of different neuroimaging feature classes^{5,6}, we predicted individual differences in working memory task performance, trait WMC, and psychiatric disability

Analytic Approach: Feature Space

• Functional data parcellated into 400 region Schaefer atlas and restricted to regions that show high > low load effects in any task measure (FDR corrected)

- 84 regions across Control (37), Visual (15), Dorsal Attention (15), Default (9), Salience/Ventral Attention (8) and Somatomotor (1) networks identified
- Despite a high degree of spatial overlap in load effects across task fMRI

Experimental Design

Behavioral Measures

Delayed Face Recognition (DFR) Task Performance

- Delayed-match-to-sample working memory task requiring maintenance of either 1 face (low load) or 3 faces (high load).
- 32 high load and 32 low load trials total (across 4 scanner runs); accuracy averaged into a single DFR Task Performance score

measures, no single region showed load effects in all three measures

Results

Visual WMC

E2D Conten Persistence Representation:

DFR Task Performance

Content	E2D	
Representation:	Persistence	Demographics

Working Memory Capacity (WMC)

 Exploratory Factor Analysis using oblimin rotation on 10 independent working memory tests identified latent factors capturing Visual and Verbal WMC

World Health Organization Diability Assessment Scale 2.0

• Scores summed across WHODAS used as index of psychiatric disability

Analytic Approach: Stacked Models Layer 1 ElasticNet Models Layer 2 LASSO Model Univariate GLM: Encoding Univariate GLM: Delay Univariate GLM: Probe ons uo Content Representation: Delay

 Pearson correlation between actual behavioral outcomes and predicted values from held-out test sets revealed that while stacked models could predict all behavioral outcomes, different neuroimaging features were retained for each model

o DFR Task Performance mostly predicted by measures from task fMRI; Visual WMC was also predicted by structural MRI and resting state FC

ofMRI features from DFR task that reflect maintenance of content over the delay period were retained in the model predicting WHODAS

Conclusions and Future Directions

Machina learning models with multimodal feature stacking were able to

significantly predict across-subject variance in all three beha	vioral outcomes
 Diverse measures (including fMRI pattern similarity and functional connectivity), not just delay period univariate (are important for understanding individual differences in 	d task-based GLM contrasts, working memory
 Measures from the scanned DFR fMRI task are retained in psychiatric disability, suggesting potential utility as transdiage Future work will examine prediction of specific psychiatric statements 	models predicting nostic biomarkers symptom classes
References	Contact: crewalsh@g.ucla.edu
Secondary Retrieval. J. Cog. Psychology. 71, 1-26	Funding: NIMH R01-MH101478 NSF DGE-2034835
 Onsworth et al., (2014). Working memory and fluid intelligence: Capacity, Attention Control and Secondary Retrieval. J. Cog. Psychology, 71. 1-26 Kyllonen and Christal (1990). Reasoning ability is (little more than) working-memory capacity?! <i>Intelligence</i>, 14. 389-433 Perlstein et al. (2001). Relation of prefrontal cortex dysfunction to working memory and symptoms in schizophrenia. Am. J. Psychiatry, 158. 1105-1138. Berman et al. (2011). Neural and behavioral effects of interference resolution in depression and rumination. Cog Aff Behav Neuro. 11(1). 85-96. Rasero et al., (2021). Integrating across neuroimaging modalities boosts prediction accuracy of cognitive ability. PLoS: Computational Biology, 17(3), e1008347. 	<section-header></section-header>

6. Tetereva et al. (2022). Capturing brain-cognition relationship: Integrating task-based fMRI across [Talk: Wed. 6/26 11:30-12:45] tasks markedly boosts prediction and test-retest reliability. Neurolmage, 263, 1-19. ASEM Ballroom 202