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Take home messages

• Reproducible & relevant science requires knowing your data
• Pipelines and sample size do not matter if your data is not good
• The definition of ”good data” varies with context & application

• Quality control protocols are central to knowing your data
• Automation is great, but insufficient
• Training on how to do QC needs more attention
• QC is an active area of research & should be more active



Why focus on quality control now?
Significant transitions in the field
Good: Large N studies and shared data!

Neutral: Different people design, collect, preprocess, and analyze data

Less good: 
• People make assumptions about data quality from previous phases
• Teaching data quality is often hands-on & reaches fewer people
• A pandemic where a cohort of trainees collected less or no data



Arbitrary volunteer from ABIDE

Arbitrary volunteer from the original Human Connectome Project

A (mildly provocative) case study
There is no such thing as ”gold standard data”
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Context and applications matter
• Successful Research using HCP data
• ROIs that average across multiple small voxels
• Correlation or task studies that summarize data across time
• Averages across the large population

• HCP weaknesses
• Studies that fully take advantage of the short TR and smallish voxel size
• Brain-wide association studies that require robust signal in individuals’ data

• Note: This is a broad & not completely fair generalization.
• Take home message
• Great data for one application, but not be great for all applications
• Identify and view data quality metrics relevant to your application



Approaching QC
• Will these data have the potential to accurately and effectively 

answer my scientific question?
…and future questions others might ask? 

• Identify data anomalies or unexpected variations that might 
skew or hide key results 
Reduce problems through processing or removal.

• All datasets have problems
• Not checking → Incorrect or misleading interpretations of results
• Checking → Fewer unknown problems

• Wang and Strong 1996:
 QC has both intrinsic and contextual measures



Questions for a QC Protocol

Teves et al “The art and science of using quality control to understand and improve 
fMRI data” Front. Neurosci. (2023) https://doi.org/10.3389/fnins.2023.1100544

Priority Context & Examples
General

Which voxels have usable data? Voxel-wise data quality & coverage*

Are locations of voxels accurately defined? Distortion & alignment to anatomy & templates*

Define context Scientific questions & study priorities affect what is or is 
not good quality data

During study planning
QC measures to support study goals Particularly for study-specific QC priorities, this is a good 

time to seek expert advice

Operation procedures to decrease acquisition 
errors

Good procedures are critical for making sure data are 
accessible and consistently documented

Additional measures to collect Experimenter notes, behavior logs, respiratory & cardiac 
traces

Organization & sharing QC measures Inaccessible information is not useful
Piloting acquisition & processing Evaluate and improve a QC protocol as part of study 

piloting

During Acquisition
Real-time monitoring of severe image 
distortions, head motion, task non-compliance

Observing problems during acquisition can give time to 
recollect data or fix problems for the current or future 
scans

Monitor peripheral measures Respiration, cardiac, eye tracking
Soon after acquisition or download

Expected data are all present and properly 
documented

Missing, duplicated, or corrupted files, incomplete runs.* 
For MRI data, behavioral logs, and peripheral 
measurements

Data consistency & documented parameters 
match data

Consistent MRI field of view, contrast, orientation, 
number of runs, & run lengths match documentation*+

Documentation on QC during acquisition or pre-
sharing exists

No documentation means there are undocumented 
problems

Data plausibly useful for study goals Regions of interest should have full coverage. No 
substantive temporal artifacts that affect connectivity 
measures

Atypical brain structures, acquisition artifacts, 
drop out, and distortion

May still be fine`, but might require altered processing. 
AFNI’s instacorr can be useful for assessment

During and after processing
Scripts ran properly Expected logs, QC metrics, & outputs created*

Appropriate voxels retained or removed Voxels with good SNR in brain are within mask and voxels 
outside of brain are removed.*

Voxels lost to dropout or field of view Check that similar voxels are retained across the 
population+

Consistent measures of temporal signal-to-noise 
and intrinsic spatial smoothness across 
population

Sessions with non-trivially lower TSNR or different 
smoothness can be a warning sign of other problems*

Automatically removed data Number of censored volumed and DOF lost from noise 
regression, temporal filtering, & censoring*

Artifacts like ghosting, phase wrapping, or 
leakage

Instacorr is useful for checking if the temporal signal from 
an article is folding over into other brain regions

Partially-thresholded activation maps Are areas with the largest model fits in anatomically 
plausible patterns inside the brain?*

Task correlated head motion or breathing Not commonly checked and can bias results.* (AFNI 
automatically checks motion, but not breathing.)

Skull properly masked for anatomical & 
functional data

Can cause problems with alignment. Part of report from 
AFNI’s SSwarper

Intensity inhomogeneity Brighter signal on the surface can be expected, but can 
cause problems with masking and alignment*

Good anatomical to functional alignment & 
alignment across days/runs

Can be a serious hidden problem if one just looks at group 
maps.+

Left & right hemispheres flipped between 
anatomical & functional data

More common than it should be & requires excluding data 
unless the true left/right can be determined*

Good anatomical to anatomical alignment across 
participants

Often correctable and causes problems if not corrected+

Group coverage across population A summation of aligned functional masks highlights brain 
areas missing in part of the population+

Processed peripheral data are good Plausible behavioral timing files, good peak detection in 
respiratory & cardiac traces

Questions
Not a checklist

• Study planning
• (Hardware QC)
• During data acquisition
• Soon after acquisition
• During processing

Phases interact



Study planning
• What QC measures matter for my study?
• Brain coverage? Distortion? TSNR?

• Operating procedures: 
• Documentation and real-time checks
• Data & meta-data to store. What and how

• Piloting
• Testing QC measures
• Testing operating procedures



Always pilot a study
• Do not  use scanning parameters just because they worked for someone else
• Do not  use scanning parameters just because they worked for someone else
• If you’re not an expert in MRI physics, things you did not consider might affect data quality.

• If you are an expert in MRI physics, you’re even more likely to collect pilot data

Alternate geometries for a 9-channel head coil
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Collect breathing and pulse!

Handwerker, Gazzaley, et al 2007

Present a 200ms flickering 
checkerboard every 18-24s

Volunteers press a button 
and move their eyes

jects were 8.4% in FEF, 10.4% in M1, 8.7% in SEF, and
8.7% in V1. M1 was significantly different from the other
ROIs (P < 0.023).
Figure 2A,B shows the mean signal percent change for

the peak magnitude during the saccade and hypercapnia
tasks for each population in each ROI and collapsed across
ROIs. Collapsed across ROIs, a significant decrease in mag-
nitude was found from younger to older subjects during
the saccade task but not during the hypercapnia task.
Within individual ROIs, there were significant differences
across populations in FEF, SEF, and V1 during the saccade
task. Figure 3A–D shows that the distributions of the mean
signal percent change values across groups are almost
identical.
In addition to comparing percent change in younger vs.

older subjects, we used regression analyses to examine
percent change vs. age. Since each TR had a different num-
ber of trials and slices, TR was also included in the regres-
sions as a dummy variable. Percent change during the sac-
cade task was significantly correlated with age in FEF (P ¼
0.01), SEF (P ¼ 0.042), V1 (P ¼ 0.002), and across all
regions (P ¼ 0.005). Percent change during the hypercap-
nia task was not significantly correlated with age.
Although there were a different number of trials and slices
for each TR, neither the percent change during the saccade
task nor the percent change during the hypercapnia task
significantly changed with TR. This was true for the young
and old subjects grouped together and for each group ana-
lyzed separately. This demonstrates that the results were
not biased by the data from one sampling rate.

BOLD Signal Relationships for
Saccade vs. Hypercapnia Tasks

Linear regression analysis was used to compare the per-
cent signal change by voxel of the saccade task vs. the
hypercapnia task. The selected voxels were significantly
active during the saccade task and all comparisons across
tasks used the same voxels for each task.

Collapsed across ROIs

There was a significant linear regression between activ-
ity in the saccade task vs. hypercapnia with voxels from
all ROIs and clustered by subject (P < 10"26, R2 ¼ 0.566,
slope ¼ 0.0959, and the intercept ¼ 0.843). When subjects
were divided into younger and older populations, the
slope of the regression for younger subjects was 0.100 and
0.087 for older subjects. Neither the slope nor intercept dif-
ferences across the populations were significant. There was
also a significant linear regression in most individual sub-
jects. Figure 4 shows examples of these regressions from
four younger and four older subjects. Forty-eight of the 50
subjects showed significant linear regressions of signal

Figure 2.
Bar graphs of regions and populations. A,B: Mean percent change
across voxels in all subjects during the saccade task and the hyper-
capnia task, respectively. C: Mean of the percent change during
the saccade task divided by the percent change during the hyper-

capnia task in each voxel. The error bars show the robust stand-
ard error clustered by subject. The P-values are shown above sig-
nificant differences and were calculated from regressions that com-
pared across populations and included a dummy variable for TR.

Figure 3.
A,B: Histograms of percent signal change during the saccade task.
C,D: Percent signal change during the hypercapnia task. E,F: The
ratio, by voxel of the percent signal changes of the saccade task di-
vided by the hypercapnia task. This includes data from all subjects
and all anatomical masks. Histograms A,C,E use a 1.1-s TR and
B,D,F use a 2-s TR. Since each population had a different number
of subjects and a different raw number of significantly active voxels,
the y-axis was scaled to percent of voxels in that population.

r Handwerker et al. r
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The unpublished part
• Stimuli presented for 3s, 6s & 12s 

durations
• A non-trivial # of volunteers held their 

breath for the stimulus duration
• No respiration data →

  Visually appealing results → 
  Misinterpreted results

See also: Birn, Murphy, et al, NeuroImage 2009



Data acquisition
• Check outputs as soon as 

possible!
• Neuroimaging, peripheral 

measures, and behavior
• Document anything atypical 

or different from acquisition 
plan
• Altered run order or bad runs, 

faulty response recording
• Volunteer sleepiness/non-

compliance
• Obvious artifacts or atypical 

brain structures AFNI real time interface Image from 
Vinai Roopchansingh



Soon after acquisition
• Did you store what you planned to store?
• Is result quality similar to pilot scans?
• Data useful for study goals:
• Good signal quality in brain regions of interest
• No artifacts that will affect analysis
• Signs of scanner problems
• Warnings to reconsider acquisition protocol
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ANATICOR
Local correlation to white matter

Jo, Comp Bio & Med (2020)

Z.S.S 16/06/13

Hardware instability 



Processing: Coverage map
Task data

Figure 3
A Task Data

B Rest Data #subjects1 30

#subjects1 20
EPI coverage maps in MNI space for (A) task and (B) rest 
data sets. More yellow indicates that more subjects 
retained usable data for a given voxel. More purple 
indicates voxels where fewer subjects have usable data. 
The black outline surrounds voxels where all subjects have 
useable data. While both datasets show dropout in 
orbitofrontal and inferior temporal areas, the dropout is 
less consistent and more pervasive in the task data where 
much of the temporal lobe does not have usable data in a 
non-trivial frac!on of subjects. The black line in (A) also 
highlights that not all subjects have cerebellar coverage. 

Rest data
Figure 3
A Task Data

B Rest Data #subjects1 30

#subjects1 20
EPI coverage maps in MNI space for (A) task and (B) rest 
data sets. More yellow indicates that more subjects 
retained usable data for a given voxel. More purple 
indicates voxels where fewer subjects have usable data. 
The black outline surrounds voxels where all subjects have 
useable data. While both datasets show dropout in 
orbitofrontal and inferior temporal areas, the dropout is 
less consistent and more pervasive in the task data where 
much of the temporal lobe does not have usable data in a 
non-trivial frac!on of subjects. The black line in (A) also 
highlights that not all subjects have cerebellar coverage. 

Coverage differs between studies: Sufficient” coverage is study-specific



Head motion
Frequent motion artifacts

Subject 017 had a high number of censored volumes due 
to mo!on. This figure depicts several volumes in which the 
mo!on ar!fact is very clear. Banding due to the magnitude 
of head mo!on during acquisi!on are visible on the 
sagi"al and coronal slices. Within the axial slice, this 
mo!on makes part of the lateral ventricles disappear 
because of displacement during acquisi!on. Such a large 
mo!on ar!fact should be visible on the console even in an 
axial-only view. Opera!onally, it would be useful to note 
this during acquisi!on and consider collec!ng an 
addi!onal run while the subject is present.

Figure 1

Subject 029 had a more subtle mo!on ar!fact than 
depicted for subject 017. The banding is visible during the 
period with the most mo!on but is otherwise more subtle 
and would be less likely to be no!ced during acquisi!on 
without automated QC metrics.

Figure 2 Sporadic motion artifacts

sub-017: Unlikely to be usable sub-029: Potentially usable with censoring



Statistical maps

sub-001 (included)

Figure 4
A sub-001 included

The full F stat map shows the decile of voxels with the 
highest F values for the full task GLM. The correla!on to 
the white ma"er ROI shows voxels that correlated to 
white ma"er a#er the task design is regressed from the 
data. (A) For sub-001 F stat peaks are large and mostly in 
gray ma"er. (B) For sub-016, the F values are smaller, and 
the peaks are in lateral ventricles, CSF, and outside of the 
brain. The white ma"er correla!on maps are harder to 
iden!fy as clearly good or bad, but more pervasive 
correla!ons to gray ma"er as in (B) are an addi!onal 
warning of a problem. Notably, both subjects have 
rela!vely li"le head mo!on (1.7% of volumes censored for 
sub-001 and 3.7% of volumes for sub-016) but AFNI also 
flagged sub-016 as having the task condi!on and not the 
control condi!on mildly correlated to mo!on. These maps 
provide evidence that task-correlated mo!on affected 
data quality.

Full F stat map Corr to white ma"er ROI

B sub-016 excluded
-0.6 0.60 24.3

-0.6 0.60 6.6

Full F stat map Correlation to white matter ROI



Statistical maps

Figure 4
A sub-001 included

The full F stat map shows the decile of voxels with the 
highest F values for the full task GLM. The correla!on to 
the white ma"er ROI shows voxels that correlated to 
white ma"er a#er the task design is regressed from the 
data. (A) For sub-001 F stat peaks are large and mostly in 
gray ma"er. (B) For sub-016, the F values are smaller, and 
the peaks are in lateral ventricles, CSF, and outside of the 
brain. The white ma"er correla!on maps are harder to 
iden!fy as clearly good or bad, but more pervasive 
correla!ons to gray ma"er as in (B) are an addi!onal 
warning of a problem. Notably, both subjects have 
rela!vely li"le head mo!on (1.7% of volumes censored for 
sub-001 and 3.7% of volumes for sub-016) but AFNI also 
flagged sub-016 as having the task condi!on and not the 
control condi!on mildly correlated to mo!on. These maps 
provide evidence that task-correlated mo!on affected 
data quality.

Full F stat map Corr to white ma"er ROI

B sub-016 excluded
-0.6 0.60 24.3

-0.6 0.60 6.6
sub-016 (excluded)
Task condition, but not control condition mildly correlated to head motion

Full F stat map Correlation to white matter ROI



Human interaction (instacorr)

Sub-018: Investigated artifact with “high EPI variance” warning

Figure 5
B

A!er seeing warnings due to “extent of local correla"on” and “EPI variance lines” in AFNI’s automa"c QC, instacorr was 
used to examine more closely. (A) For the correla"on seed at the crosshair, Sub-018, shows an ar"factual pa#ern of 
correla"ons (p<0.001) across large por"ons of the posterior cortex and cerebellum. Time series shows that some of this 
follows several large jumps in mo"on. (B) For Sub-002, an unusually large hypointensity was no"ced in the unprocessed EPI 
that was alarming during the ini"al review. Anatomical viewing of the same slices shows a slightly large superior cistern and 
4th ventricle. Correla"ons to the cross hairs on the unpressed image (p<0.001 with translucency below threshold) shows 
slightly larger correla"ons to CSF in the interhemispheric fissure. This observa"on will likely not cause problems for univari-
ate sta"s"cal tests, but it could cause analysis issues if ROIs include this larger area of CSF that contains some internal 
correla"ons.

Seed "me series
Euclidian norm of mo"on

A

Sub-002: Investigated 
hypointensity



More automated correlation-based measures

Expected network plausible?
Corr to white-matter non-global?

Local corrs follow anatomy
EPI variance for follow-up.

Figure 6
A sub-109 included

Automated QC image from 3 rest data study subjects with 
low head mo!on (only 4-6% of volumes censored). An 
atlas-based posterior cingulate (PCC) ROI is calculated and 
the correla!on maps (r values), should highlight some 
default mode network (DMN) connec!ons. Too much 
correla!on between a white ma"er (WM) ROI and gray 
ma"er can be concerning. Local correla!ons are the 
correla!ons of each voxel to surrounding voxels in a 2cm 
sphere and can highlight scanner ar!facts. EPI variance 
line warnings highlight lines of high variance that might be 
ar!facts. (A) sub-109 has a plausible DMN from the PCC 
seed, no excessive correla!ons to white ma"er, no 
non-anatomical local correla!ons, and the variance 
warnings were checked with instacorr and didn’t show 
pervasive issues a#er preprocessing. (B) sub-102 was 
typical for these data. The DMN is present, but not as 
clean, there are more WM correla!ons in and out of the 
brain, and EPI variance warnings showed some issues with 
instacorr, but not enough to reject. If typical subjects in 
this dataset were cleaner, we might have rejected 
sub-102. (C) sub-114 is a clear rejec!on with non-anatom-
ical an!correla!ons to the PCC, large ar!facts in WM 
correla!ons, a large local correla!on, and EPI variance 
warnings paired with concerning ar!facts visible with 
instacorr.

-0.6 0.6
B sub-102 included

C sub-114 excluded

Corr to PCC Corr to WM Local corr EPI variance

-0.7 0.7

Corr to PCC Corr to WM Local corr EPI variance

-0.6 0.6 -0.7 0.7

Corr to PCC Corr to WM Local corr EPI variance

-0.6 0.6 -0.7 0.7



Alignment

Anatomical edges over EPI volume is 
useful for both checking alignment 
and viewing if there the left & right 

sides of the brain were flipped

Figure 7
A sub-115 Orig Orienta!on

Three subjects in the res!ng data triggered a le"-right flip 
warning which happens when the cost func!on for 
anatomical to EPI alignment finds a be#er local minimum 
a"er flipping the anatomical. The grayscale EPI image used 
for alignment is shown with the edges of the aligned 
anatomicals. (A) The original alignment for sub-115 looks 
ok, but (B) shows the alignment for sub-115 with the 
anatomical image flipped and the gyral edges are clearly 
be#er matched. sub-115 generated a “severe” le"-right 
flip warning. sub-116 does not have a great alignment for 
the original (C) or flipped (D) anatomical and generated a 
“medium” le"-right flip warning. Since neither fits well, 
sub-116 may have been shared with the wrong anatomical 
image. (E) The cost func!on minimums for the successful 
alignments in the rest dataset were -0.36 to -0.5 while the 
3 flipped alignments were more than -0.13. Similarly, 
when the task data were uninten!onally aligned to the 
wrong anatomicals, the cost func!ons were much higher. 
While cost func!ons are rela!ve measures, the values 
may be useable as an intra-study alignment QC measure.

B sub-115 Flipped Anat

C sub-116 Orig Orienta!on D sub-116 Flipped Anat
cost func: -0.11799 cost func: -0.46431

cost func: -0.07533 cost func: -0.07928
E

-0.5 -0.4 -0.3 -0.2 -0.1
Wrong anats or flip LR
Correct anatomicals

Rest Data

Task Data
Correct Anats

Task Data
Wrong Anats

Alignment Cost Func!on Values

Flipped fits better
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Figure 7
A sub-115 Orig Orienta!on

Three subjects in the res!ng data triggered a le"-right flip 
warning which happens when the cost func!on for 
anatomical to EPI alignment finds a be#er local minimum 
a"er flipping the anatomical. The grayscale EPI image used 
for alignment is shown with the edges of the aligned 
anatomicals. (A) The original alignment for sub-115 looks 
ok, but (B) shows the alignment for sub-115 with the 
anatomical image flipped and the gyral edges are clearly 
be#er matched. sub-115 generated a “severe” le"-right 
flip warning. sub-116 does not have a great alignment for 
the original (C) or flipped (D) anatomical and generated a 
“medium” le"-right flip warning. Since neither fits well, 
sub-116 may have been shared with the wrong anatomical 
image. (E) The cost func!on minimums for the successful 
alignments in the rest dataset were -0.36 to -0.5 while the 
3 flipped alignments were more than -0.13. Similarly, 
when the task data were uninten!onally aligned to the 
wrong anatomicals, the cost func!ons were much higher. 
While cost func!ons are rela!ve measures, the values 
may be useable as an intra-study alignment QC measure.

B sub-115 Flipped Anat

C sub-116 Orig Orienta!on D sub-116 Flipped Anat
cost func: -0.11799 cost func: -0.46431

cost func: -0.07533 cost func: -0.07928
E

-0.5 -0.4 -0.3 -0.2 -0.1
Wrong anats or flip LR
Correct anatomicals

Rest Data

Task Data
Correct Anats

Task Data
Wrong Anats

Alignment Cost Func!on Values



Alignment: QC yourself!Figure X
B. Anat & EPI from same brain

When the data were ini!ally processed, anatomical 
images for a few subjects were matched to the wrong EPI 
data. For sub-021, this ini!al mismatch (A) is compared to 
the correct anatomical (B). Just looking at the edge maps, 
this looks like a bad alignment, but when comparing to 
the full anatomicals, it is more clear very li"le gyral 
structure matches. The underlying issue was iden!fied by 
comparing the processed to the unprocessed anatomical 
images.

A. Anat & EPI from diff brains



Alignment: QC research is ongoing!

Alignment cost function used to optimize a relative local minimum.
The raw values within a dataset seem to highlight bad alignments

Figure 7
A sub-115 Orig Orienta!on

Three subjects in the res!ng data triggered a le"-right flip 
warning which happens when the cost func!on for 
anatomical to EPI alignment finds a be#er local minimum 
a"er flipping the anatomical. The grayscale EPI image used 
for alignment is shown with the edges of the aligned 
anatomicals. (A) The original alignment for sub-115 looks 
ok, but (B) shows the alignment for sub-115 with the 
anatomical image flipped and the gyral edges are clearly 
be#er matched. sub-115 generated a “severe” le"-right 
flip warning. sub-116 does not have a great alignment for 
the original (C) or flipped (D) anatomical and generated a 
“medium” le"-right flip warning. Since neither fits well, 
sub-116 may have been shared with the wrong anatomical 
image. (E) The cost func!on minimums for the successful 
alignments in the rest dataset were -0.36 to -0.5 while the 
3 flipped alignments were more than -0.13. Similarly, 
when the task data were uninten!onally aligned to the 
wrong anatomicals, the cost func!ons were much higher. 
While cost func!ons are rela!ve measures, the values 
may be useable as an intra-study alignment QC measure.

B sub-115 Flipped Anat

C sub-116 Orig Orienta!on D sub-116 Flipped Anat
cost func: -0.11799 cost func: -0.46431

cost func: -0.07533 cost func: -0.07928
E

-0.5 -0.4 -0.3 -0.2 -0.1
Wrong anats or flip LR
Correct anatomicals

Rest Data

Task Data
Correct Anats

Task Data
Wrong Anats

Alignment Cost Func!on Values



Design QC review in parallel to 
new methods

tedana.readthedocs.io report for results



Take home messages
• Care about reproducibility? The quality control process is more important than 

sample size or thresholding method
• Designing a QC process starts with study planning and includes every step of a study

• Including & especially for using data collected by others
• Document QC procedures & results particularly for data sharing

• Automated QC must be paired with human observations and interpretations
• Where human time is most useful is a growing issue for big N studies

• QC is not just keep vs exclude. It’s “What questions can I answer with these data?”
• Training on QC needs more attention
• QC is an active area of research & should be more active
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