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Introduction
• Functional magnetic resonance imaging (fMRI) has repeatedly shown that BOLD signals will fluctuate 

across the cortex during task-free conditions 
◦ Fluctuating regions are often compared using Pearson correlation
◦ Taking correlation between all region pairs forms a correlation, i.e., functional connectivity, matrix. 

• Measuring the dynamic nature of correlations is increasingly popular; can reveal connectivity states5 
and transients11

• Edge time series3,16 render connectivity dynamics at the temporal resolution of the input time series 
◦ Recently, it has been shown that features of edge time series can be partially explained with features 

of static correlation9,12,13.   
• Here we further explore the relationship between static versus dynamic edge time series features.
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Note:

For each edge ts,
Σ / (N) = 

Pearson correlation 
coefficient

• Edge time series are the element-wise products of the 
z-scored time series
◦ Average edge time series → Pearson’s r

• Given this mathematical connection, what other 
relationships exist between time-average correlation 
and what we read out from edge time series? 
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Methods
• Simulated data

◦ Time series generated with a 2-state Markov chain, convolved with a canonical HRF for five-second stimulus 
and bandpass filtered (0.008-0.08 Hz)

◦ Target covariance patterns were enforced on randomly generated and uncorrelated channels by projecting 
the data onto the axes of the eigen-decomposed covariance10

• Using this method, we can control coupling (i.e., correlation) between two channels
◦ Randomly generated target covariance using the stochastic block model1 — a generative network model that 

allows for planted community structure with parameterized weight and edge existence
• Real data

◦ Human Connectome Project resting-state data (0.72 TR, 1200 TRs, ~15 mins)
◦ Minimally pre-processed4: motion, distortion, bandpass, first/last 50 TRs discarded
◦ Nuisance regressed using aCompCor2 components (5 WM, 5 CSF) and 24 motion parameters. Time series 

constructed by averaging vertex data within 200 node of Schaefer parcellation15, at each time point, using 
Connectome Workbench

• Edge time series
▪ Computed via the element-wise product of two z-scored time series; sum of which is correlation
▪ RSS: root of the sum of squares of all edge time series magnitudes, taken at each time point

Results
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Figure 1. Using simulated data with parameterized coupling, we observe relationship between the similarity of node 
time series and the amplitude of edge time series. a) Example time series simulation for one channel using two-state 
Markov chain (blue) that is subsequently convolved with the HRF and bandpass filtered (green); 1000 time points generated 
b) Individual channels (n=200) adhere to bandpass filter (vertical red lines), whereas the ETS generation induces high-
er/lower amplitudes c) The distance (Kolmogorov-Smirnov) between node and ETS power spectra is systematically modu-
lated by coupling of two channels, with min. around 0.8 d) Maximum values of time series within a narrow range compared 
to (e), the maximum values of ETS; coupling values derived from 200 simulations at each of 100 coupling values (0–.99, 
0.01 steps), denoted by green-yellow color map
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Figure 2. By generating a toy system of 
20 node time series with a planted co-
variance structure, we observe that 
modularity affects the maximum edge 
time series amplitude. a) Example matri-
ces produced by the stochastic blockmod-
el, at different concentrations, which result 
in different modularity values (b) based on 
Potts model with a gamma of 1. c) After 
generating 200 synthetic matrices, time 
series, and subsequently edge time series 
for each network, the room-sum-square 
(RSS) of the edge time series are taken; 
more extreme RSS produced, as indicated 
by the red line, by more modular struc-
tures, as predicted and expected based on 
previous studies13,14 which discussed de-
pendency of “events” on modularity or a 
relatively large leading eigenvector of the 
covariance matrix; max RSS: grey line, 
mean of max RSS: red dotted line
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Figure 3. After increasing 
amount of principle compo-
nents removed from time 
series data, binning pat-
terns and RSS ETS change. 
a) RSS % bins were used de-
marcate data to construct 10 
matrices & each matrix was 
compared to time-averaged 
connectivity, at each level of 
components removed b)  
ETS RSS as a matrix, show-
ing how pattern of high ampli-
tude events changes as func-
tion of variance removed c) 
Unperturbed ETS RSS d) 
Normalized ETS RSS at vary-
ing levels of perturbation, dis-
tinguished by color map; be-
cause generating ETS in-
volves z-scoring, data with 
many components removed 
(>100) produce similar RSS 
magnitude as less perturbed, 
yet more noisy.    
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Figure 4. Applying randomization that preserves static covariance can still change edge time series phenomena.  
a) ETS RSS time series from an HCP resting-state scan, with varying levels of randomization applied (100 surrogate time 
series, as colored lines), according to the number of probabilistically sampled frequencies that were phase-shifted8; shift ap-
plied to all channels equally, maintaining original covariance pattern b) Transition probability matrices7 derived from ETS 
and surrogate data; based on t and t+1 transitions for each node, where affiliation is dictated by max. ETS magnitude at 
each time point c) Original vs. surrogate data transition probability values compared, demonstrating that even a slight per-
turbation to data, with time-averaged covariance held constant, causing between-system changes; suggests target for 
future ETS applications, not tethered to time-averaged covariance. 

Discussion
• Here we probe time series and edge time series characteristics, to obtain a better understanding of how their features are related. 

We illustrate: 
◦ ETS do not respect bandpass filter of original data (Fig1b), and the similarity of time series modulates the magnitude of ETS 

(Fig1c-e); implicates role of correlation for high amplitude ETS 
◦ Higher modularity of a simulated system results in higher amplitude ETS RSS (Fig. 2)
◦ Similarity of ETS RSS binned data to time-averaged data holds for intact data (Fig3), and relationship is diminished after remov-

ing variance via incomplete PCA reconstructions
◦ Small perturbations to time series (Fig 4a) results in large dynamics changes (Fig4b,c), even if time-averaged covariance is kept 

constant by the randomization method
• Indeed, some features of the time series are sufficient to estimate ETS properties13—notably those ETS properties that collapse 

across time, such as edge community similarity3 or the distribution of high-amplitude events into specific bins9. 
◦ Suggests that future work on edge time series should explore dynamics using the fine-grained precision that ETS can offer; op-

portunity for state-based analyses6,7

◦ Additional line of research will focus on comprehensively characterizing ETS channel properties (power/frequency, duty cycle, 
burstiness) to potentially distinguish if correlation appears different, for different functional relationships; i.e., investigating differ-
ent fluctuation regimes across brain.  
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Checkout github.com/faskowit/ohbm23 for example code 
in MATLAB


