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INTRODUCTION
•Brain-behavior models often use resting-state fMRI data in the form of static functional connectivity (FC) matrices as 
inputs, where each entry corresponds to the Pearson’s correlation between time series for a pair of regions of 
interest (ROIs or nodes)1.

•This approach has been integral to key neuroimaging findings linking connectivity with behavioral phenotypes2, yet it 
provides a potentially limited perspective.

▪By definition, FC describes the ‘average’ similarity of signals over time, and neglects information about the 
ebbs and flows of brain activity, i.e., connectivity dynamics.

•To access dynamic connectivity information, we generated a time series for each node pair (or edge), capturing how 
the two nodes co-fluctuate moment-to-moment, called an edge time series3.

▪This process results in a high-dimensional data structure, describing the instantaneous co-fluctuation between 
each pair of nodes, for each timepoint.

▪Here, we explore multiple summary measures of edge time series -- time-insensitive and time-sensitive -- and 
evaluate their predictive ability for cognitive traits. We aim to investigate how much dynamic changes additionally 
inform brain-behavior predictions over more common static measures. 
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•Next, we predicted attention and intelligence 
using a ridge regression model that included all 
three time-insensitive representations of the 
data.

•This model performed better than our individual 
models for attention (r=0.31, p<0.001) and 
intelligence (r=0.43, p<0.001),

•We found that, across fitting iterations, the model 
framework repeatedly selected the mean of the 
edge time series in building these predictions, 
suggesting that the mean (or FC) is relatively 
most predictive.
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Figure. Connectome-Based Predictive Modeling results for predicting Attention Network Task scores (a) and WASI-II (b) using the edge time series mean, entropy, and standard deviation. Y-axis represents Pearson’s R 
between observed and predicted behavioral values. Blue dots show results of 100 iterations of 10-fold cross-validation using true data, and gray boxen plots show distribution of results from 1,000 iterations using randomized 
data. Black line represents median accuracy for true models. 

Figure. Bar and line plots showing the number of edges selected as being significantly (p < 0.01) correlation with Attention Network Task scores 
(a) or WASI-II (b) scores within each metric when all three representations of the data were given to the model at once. Ridge regression was 
run 100 times. Bars depict the average number of significant edges per summary metric across all iterations, while the lines show the number of 
edges selected per summary metric in each iteration. Results were consistent across iterations. 

Figure. Connectome-Based Predictive Modeling results for predicting Attention Network Task scores (a) and WASI-II (b) using edge time series mean, sample entropy, autocorrelation, von Neumann difference, and 
zero-crossing of the autocorrelation function. Y-axis represents Pearson’s R between observed and predicted behavioral values. Blue dots show results of 100 iterations of 10-fold cross-validation using true data, and gray 
boxen plots show distribution of results from 1,000 iterations using randomized data. Black line represents median accuracy for true models. 

• Finally, we computed predictions 
using several time-sensitive 
summary metrics, including 
autocorrelation and dynamic entropy.

• Interestingly, their predictive value 
proved to be not as significant as 
that of the mean.

▪We used CPM to predict attention and 
intelligence scores with a 10-fold 
cross-validation framework using each 
time-insensitive representation of 
connectivity dynamics and evaluated model 
accuracy by computing the correlation 
between the observed and predicted values.
▪We were able significantly predict attention 
and intelligence scores  using edge time 
series mean, entropy, and standard deviation 
(all permutation-based p-values<0.01)
▪Mean (equal to static FC) consistently 
performs best.
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Calculate multiple summary measures 
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• Sample Entropy: conditional property that two 
windows of size 10 will remain similar, with a shift 
of 1 TR8

• von Neumann Difference: standard deviation of the 
successive differences of the time series9

• Autocorrelation: computed with a lag of 3 TRs 
(approx. 2s)8

• Zero-Crossing: zero-crossing of the autocorrelation 
function8
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Feature matrices as 
input to a brain-behavior 

modeling framework 
known as 

Connectome-Based 
Predictive Modeling 
(CPM)10,11 to predict 
subject phenotypes 
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Figure. ROI x ROI matrices each 
containing a different summary metric of 
resting-state fMRI edge time series. Each 
plot shows the average across the datatset. 
Plots on the left-hand side indicate 
time-insensitive summary statistics, where 
as plots on the right-hand side indicate 
time-sensitive summary statistics.

Figure. Description of Connectome-Based Predictive Modeling (CPM) (figure adapted from Shen et al. 2017 & Gao et al. 2019) a) 
Description of CPM using a general linear model to compute behavioral predictions from one fMRI scan per subject. B) Description 
of CPM using ridge regression to compute behavioral predictions using multiple representations of fMRI data per subject. Note 
that shared steps are indicated by being placed in between the blue (panel a) and green (panel b) shaded backgrounds.) 

CONCLUSIONS
• Our results demonstrated that mean co-fluctuation, i.e. functional connectivity, shows 
predictive power that was unmatched compared to other evaluated statistics. 

▪This suggests that static FC over a 10 minute period may be more predictive of 
phenotypic traits than the dynamics over this brief period.
▪These findings are potentially limited by the interaction between preprocessing, such 
as temporal filtering, and these summary statistics.

• Future work will focus on exploring multivariate combinations of these features, to test 
whether the performance of static FC can be exceeded.
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