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This Standard pipeline was compared to successive processing pipelines: 
A. The standard pipeline 
B. Smoothing all images to a fixed FWHM + SFNR as a covariate 
C. Additional distortion correction using blip-up/blip-down EPI 
D. Regression of physiological signals (RetroTS) 
E. Removal of signal from White Matter tissues (ANATICOR) 

In each pipeline, group level analysis was conducted using a either a more traditional 
ANOVA (1), or a Linear Mixed Effects model (2-5; 3dLME; Chen et al., 2013) with voxel-
wise regressors of SFNR. 

Neuroimaging studies are increasingly targeting diverse populations represented by 
different genetic, social, phenotypic, and geographical profiles (e.g. Rueckl et al., 
2015), which are made more feasible through data collection at multiple sites using a 
mixture of equipment.  These studies often involve both cognitive tasks (Gee et al., 
2015; Brown et al., 2010, Yendiki et al., 2010) and/or resting state (Turner et al., 2013).  
Some recommendations for combining data from multi-site studies exist (FBIRN; Zou 
et al., 2005), and some portion of these methods have been implemented in the HCP 
(Van Essen et al., 2013).  Here we compare new approaches for normalizing and 
combining data from different MRI platforms, which may help facilitate more large-
scale multi-site studies.

Introduction

In this study, we collected fMRI data consisting of a rotating checkerboard stimulus 
on eleven participants, each imaged using four different 3T fMRI machines located at 
the National Institutes of Health (Bethesda, MD) with different scanner platforms (GE 
Signs HDx, GE MR 750, Siemens Skyra, Siemens Prisma), and manufacturer multi-
channel whole-head phased array coils.  All data were collected using matched 
scanner parameters (TR=2.0s, TE 0.03, 33 axial slices at 3mm isotropic resolution). 

Methods

Figure 3 (above): Proportion of variance for Subject, Scanner, and 
Residual calculated for each processing pipeline (calculated for three 
MRI platforms). The confidence intervals were constructed using 
bootstrapping. 1000 bootstrapped samples for each version of the 
analysis were created by drawing from the original dataset randomly 
across all subject/scanner combinations. The LME model was fit on 
each bootstrapped sample to yield 1000 estimates of the proportions 
of variance.  The error bars represent the 95% confidence interval for 
the estimates of the proportions of variance.

Scanner GE Signa HDx GE MR-750 Siemens Prisma Siemens Skyra

Head Coil 8-channel 32-channel 32-channel 32-channel

Software Version 15M4 DV22.0_V02 VD13D VD13A

Data from each MRI scanner were analyzed in AFNI using a standard pipeline

Pipeline F P-value Cluster Size

A F(2.35, 23.46)=19.49 p<0.0001 85
B F(2.23, 22.31)=22.31 p<0.0001 46

C F(2.79, 25.09)=17.28 p<0.0001 25

D F(2.44, 14.67)=7.56 p=.004 0

E F(2.64, 15.85)=7.35 p=.003 0

Results
A whole-brain repeated-measures ANOVA on the default 
processing pipeline identified a single cluster in visual cortex 
(Right Calcarine Gyrus) differentiating the MRI platforms at a 
threshold of p=.001 (uncorrected) made up of 85 voxels.  This 
cluster size was smaller than what would survive cluster 
correction (Cox et al., 2017), and did not increase in size across 
subsequent analyses (B-E; Figure 1).   

We then performed an ROI analysis, showing that with 
subsequent levels of analyses, the p-value of this activation 
decreased, corresponding to cluster size decreases.  All 
analyses are corrected for sphericity using Greenhouse-Geisser, 
calculated using the Afex package in R.  

Figure 1 (above): Scanner differences in visual cortex to checkerboard 
stimulus in the 5 pipelines.  Activation differences between scanners 
were non-significant at p=.001 in D and E. 

Figure 2 (below): Activation of the visual cortex ROI, depicted in % 
signal change from baseline, for each MRI platform.  While scanner 
differences were identified in early pipelines (A-C), those differences 
were not significant to the p<.001 (uncorrected) after accounting for 
physiological signals.

Conclusions
•We analyzed fMRI activation of a rotating checkerboard in 
the same 11 participants, each collected on four different 
scanner platforms 
•Data were processed in parallel through separate 
pipelines, making use of “best practices” in fMRI analyses 
•The inclusion of fixed-level smoothing, blip distortion 
correction, physiological regressors, and local white 
matter signal regression led to decreases in differences 
between MRI platforms 
•Though non-significant, changes in proportion of variance 
accounted for by subject, scanner, and residual were 
observed 
•Future studies 
•Should compare vendor reconstruction software to open 
source alternatives (i.e. Gadgetron). 
•Collect multiple sessions for each participant within each 
MR environment to better estimate variances of Subject 
and Scanner

Using the repeated-measures design, we fit a linear mixed 
effects model in which subject and scanner were specified as 
random effects. This is equivalent to the intraclass correlation 
(ICC) and yields the proportion of variance that can be attributed  
to each of the random effects, including the residual variance 
not captured by the model (depicted for each version of the 
analysis in Figure 3). Changes in proportion of variance did not 
reach statistical significance.  
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